Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reporte...Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 2展开更多
Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This a...Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclearencoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V/itorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.展开更多
Training can now be delivered on a large scale through mobile and web-based platforms in which the learner is often distanced from the instructor and their peers. In order to optimize learner engagement and maximize l...Training can now be delivered on a large scale through mobile and web-based platforms in which the learner is often distanced from the instructor and their peers. In order to optimize learner engagement and maximize learning in these contexts, instructional content and strategies must be engaging. Key to the development and study of such content and strategies, and adaptation of instructional techniques when learners become disengaged, is the ability to objectively assess engagement in real-time. Previous self-reported metrics, or expensive EEG-based engagement measures are not appropriate for large-scale platforms due to their complexity and cost. Here we describe the development and testing of a measurement and classification technique that utilizes non-invasive physiological and behavioral monitoring technology to directly assess engagement in classroom, simulation, and live training environments. An experimental study was conducted with 45 students and first responders in a unmanned aircraft systems (UAS) training program to assess the ability to accurately assess learner engagement and discriminate between levels of learner engagement within classroom, simulation and live environments via physiological and behavioral inputs. A series of engagement classifiers were developed using cardiovascular, respiratory, electrodermal, movement, and eye-tracking features that were able to successfully classify engagement levels at an accuracy level of 85% with eye-tracking features included or 81% without eye-tracking features. This approach is capable of monitoring, assessing, and tracking learner engagement across learning situations and contexts, and providing real-time and after action feedback to support instructors in modulating learner engagement.展开更多
文摘Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 2
基金This research was supported by National Science Foundation grants IBN-9808904 (M,R. and J.M.) and IOS-0726178 (M.R. and M.T.) the American Society of Plant Biologists' Education Foundation (M.R. and M.T.)+1 种基金 Ministry for Food, Agriculture, Forestry, and Fisheries, Korean Government, Korea Research Foundation (J.L.) the National Institutes of Health (grant R01ES013679 to D.B.), and the University of Maine (M.R.). This is Maine Agricultural and Forest Experiment Station Publication Number 3079, Hatch Project no. ME08361-08MRF (NC 1168).ACKNOWLEDGMENTS The authors thank Dr Michael Salvucci for providing antibodies to PRK and Dr Jorn Petersen for analyzing the genomic PRK sequence for introns. No conflict of interest declared.
文摘Phosphoribulokinase (PRK), a nuclear-encoded plastid-localized enzyme unique to the photosynthetic carbon reduction (Calvin) cycle, was cloned and characterized from the stramenopile alga Vaucheria litorea. This alga is the source of plastids for the mollusc (sea slug) Elysia chlorotica which enable the animal to survive for months solely by photoautotrophic CO2 fixation. The 1633-bp V. litorea prk gene was cloned and the coding region, found to be interrupted by four introns, encodes a 405-amino acid protein. This protein contains the typical bipartite target sequence expected of nuclearencoded proteins that are directed to complex (i.e. four membrane-bound) algal plastids. De novo synthesis of PRK and enzyme activity were detected in E. chlorotica in spite of having been starved of V. litorea for several months. Unlike the algal enzyme, PRK in the sea slug did not exhibit redox regulation. Two copies of partial PRK-encoding genes were isolated from both sea slug and aposymbiotic sea slug egg DNA using PCR. Each copy contains the nucleotide region spanning exon 1 and part of exon 2 of V litorea prk, including the bipartite targeting peptide. However, the larger prk fragment also includes intron 1. The exon and intron sequences of prk in E. chlorotica and V/itorea are nearly identical. These data suggest that PRK is differentially regulated in V. litorea and E. chlorotica and at least a portion of the V. litorea nuclear PRK gene is present in sea slugs that have been starved for several months.
文摘Training can now be delivered on a large scale through mobile and web-based platforms in which the learner is often distanced from the instructor and their peers. In order to optimize learner engagement and maximize learning in these contexts, instructional content and strategies must be engaging. Key to the development and study of such content and strategies, and adaptation of instructional techniques when learners become disengaged, is the ability to objectively assess engagement in real-time. Previous self-reported metrics, or expensive EEG-based engagement measures are not appropriate for large-scale platforms due to their complexity and cost. Here we describe the development and testing of a measurement and classification technique that utilizes non-invasive physiological and behavioral monitoring technology to directly assess engagement in classroom, simulation, and live training environments. An experimental study was conducted with 45 students and first responders in a unmanned aircraft systems (UAS) training program to assess the ability to accurately assess learner engagement and discriminate between levels of learner engagement within classroom, simulation and live environments via physiological and behavioral inputs. A series of engagement classifiers were developed using cardiovascular, respiratory, electrodermal, movement, and eye-tracking features that were able to successfully classify engagement levels at an accuracy level of 85% with eye-tracking features included or 81% without eye-tracking features. This approach is capable of monitoring, assessing, and tracking learner engagement across learning situations and contexts, and providing real-time and after action feedback to support instructors in modulating learner engagement.