期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems
1
作者 Anna harris stephen harris Danielle Rauls 《Applied Mathematics》 2016年第17期2174-2182,共10页
The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and an... The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections. 展开更多
关键词 Nonconforming Finite Element Methods SUPERCONVERGENCE L2-Projection Second-Order Elliptic Equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部