This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencin展开更多
This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation the...This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supp展开更多
Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived ...Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigate展开更多
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencin
文摘This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supp
文摘Inclusion of dissipation and memory mechanisms, non-classical elasticity and thermal effects in the currently used plate/shell mathematical models require that we establish if these mathematical models can be derived using the conservation and balance laws of continuum mechanics in conjunction with the corresponding kinematic assumptions. This is referred to as thermodynamic consistency of the mathematical models. Thermodynamic consistency ensures thermodynamic equilibrium during the evolution of the deformation. When the mathematical models are thermodynamically consistent, the second law of thermodynamics facilitates consistent derivations of constitutive theories in the presence of dissipation and memory mechanisms. This is the main motivation for the work presented in this paper. In the currently used mathematical models for plates/shells based on the assumed kinematic relations, energy functional is constructed over the volume consisting of kinetic energy, strain energy and the potential energy of the loads. The Euler’s equations derived from the first variation of the energy functional for arbitrary length when set to zero yield the mathematical model(s) for the deforming plates/shells. Alternatively, principle of virtual work can also be used to derive the same mathematical model(s). For linear elastic reversible deformation physics with small deformation and small strain, these two approaches, based on energy functional and the principle of virtual work, yield the same mathematical models. These mathematical models hold for reversible mechanical deformation. In this paper, we examine whether the currently used plate/shell mathematical models with the corresponding kinematic assumptions can be derived using the conservation and balance laws of classical or non-classical continuum mechanics. The mathematical models based on Kirchhoff hypothesis (classical plate theory, CPT) and first order shear deformation theory (FSDT) that are representative of most mathematical models for plates/shells are investigate