We develop a class of conservative integrators for the regularized logarithmic Schr¨odinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear e...We develop a class of conservative integrators for the regularized logarithmic Schr¨odinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.展开更多
Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBV...Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP.Besides,whenever the classic Lipschitz conditions are satisfied,the extended BBVMs are preconsistent and pth order consistent.Moreover,through some numerical examples,the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.展开更多
We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier.Based on the second-order finite...We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier.Based on the second-order finite-difference semidiscretization in the spatial direction,the integrating factor Runge-Kutta schemes are applied in the temporal direction.Theoretical analysis indicates that the proposed schemes conserve mass and preserve the maximum principle under reasonable time step-size restriction,which is independent of the space step size.Finally,the theoretical analysis is verified by several numerical examples.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus m...Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats.展开更多
We modify the construction of the third order finite volume WENO scheme on triangular meshes and present a simplified WENO(SWENO)scheme.The novelty of the SWENO scheme is the less complexity and lower computational co...We modify the construction of the third order finite volume WENO scheme on triangular meshes and present a simplified WENO(SWENO)scheme.The novelty of the SWENO scheme is the less complexity and lower computational cost when deciding the smoothest stencil through a simple mechanism.The LU decomposition with iterative refinement is adopted to implement ill-conditioned interpolation matrices and improves the stability of the SWENOscheme efficiently.Besides,a scaling technique is used to circument the growth of condition numbers as mesh refined.However,weak oscillations still appear when the SWENO scheme deals with complex low density equations.In order to guarantee the maximum-principle-preserving(MPP)property,we apply a scaling limiter to the reconstruction polynomial without the loss of accuracy.A novel procedure is designed to prove this property theoretically.Finally,numerical examples for one-and two-dimensional problems are presented to verify the good performance,maximum principle preserving,essentially non-oscillation and high resolution of the proposed scheme.展开更多
The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. T...The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. The IIM is capable of treating a discontinuity in the drift of Fokker-Planck equation and it is readily extended to the dry and viscous friction model. Analytic results of the considered model are used to confirm the effectiveness and design accuracy of the scheme.展开更多
It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water eq...It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.展开更多
This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulati...This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws.The proposed algorithms can preserve corresponding conformal multi-symplectic conservation lawand conformalmomentum conservation lawin any local time-space region,respectively.Moreover,it is further shown that the algorithms admit the conformal charge conservation law,and exactly preserve the dissipation rate of charge under appropriate boundary conditions.Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.展开更多
In this paper,we propose two new explicit multi-symplectic splitting methods for the nonlinear Dirac(NLD)equation.Based on its multi-symplectic formulation,the NLD equation is split into one linear multi-symplectic sy...In this paper,we propose two new explicit multi-symplectic splitting methods for the nonlinear Dirac(NLD)equation.Based on its multi-symplectic formulation,the NLD equation is split into one linear multi-symplectic system and one nonlinear infinite Hamiltonian system.Then multi-symplectic Fourier pseudospectral method and multi-symplectic Preissmann scheme are employed to discretize the linear subproblem,respectively.And the nonlinear subsystem is solved by a symplectic scheme.Finally,a composition method is applied to obtain the final schemes for the NLD equation.We find that the two proposed schemes preserve the total symplecticity and can be solved explicitly.Numerical experiments are presented to show the effectiveness of the proposed methods.展开更多
A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to ...A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to mesh several layers of elements adjacent to the boundary.The rest of the domain is then meshed by the conforming Delaunay triangulation.The non-conformal interface between two parts of meshes are adjusted.Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality.Robustness and quality of the proposed method is shown.Convergence proof of each stage as well as the whole algorithm is provided.Various numerical examples are included as well as the quality of the meshes.展开更多
The Degasperis-Procesi(DP)equation is split into a system of a hyperbolic equation and an elliptic equation.For the hyperbolic equation,we use an optimized finite difference weighted essentially non-oscillatory(OWENO)...The Degasperis-Procesi(DP)equation is split into a system of a hyperbolic equation and an elliptic equation.For the hyperbolic equation,we use an optimized finite difference weighted essentially non-oscillatory(OWENO)scheme.New smoothness measurement is presented to approximate the typical shockpeakon structure in the solution to the DP equation,which evidently reduces the dissipation arising from discontinuities simultaneously removing nonphysical oscillations.For the elliptic equation,the Fourier pseudospectral method(FPM)is employed to discretize the high order derivative.Due to the combination of the WENO reconstruction and FPM,the splitting method shows an excellent performance in capturing the formation and propagation of shockpeakon solutions.The numerical simulations for different solutions of the DP equation are conducted to illustrate the high accuracy and capability of the method.展开更多
In this paper,we propose a wavelet collocation splitting(WCS)method,and a Fourier pseudospectral splitting(FPSS)method as comparison,for solving onedimensional and two-dimensional Schrödinger equations with varia...In this paper,we propose a wavelet collocation splitting(WCS)method,and a Fourier pseudospectral splitting(FPSS)method as comparison,for solving onedimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics.The two methods can preserve the intrinsic properties of original problems as much as possible.The splitting technique increases the computational efficiency.Meanwhile,the error estimation and some conservative properties are investigated.It is proved to preserve the charge conservation exactly.The global energy and momentum conservation laws can be preserved under several conditions.Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.展开更多
In this paper,we develop a multi-symplectic wavelet collocation method for three-dimensional(3-D)Maxwell’s equations.For the multi-symplectic formulation of the equations,wavelet collocation method based on autocorre...In this paper,we develop a multi-symplectic wavelet collocation method for three-dimensional(3-D)Maxwell’s equations.For the multi-symplectic formulation of the equations,wavelet collocation method based on autocorrelation functions is applied for spatial discretization and appropriate symplectic scheme is employed for time integration.Theoretical analysis shows that the proposed method is multi-symplectic,unconditionally stable and energy-preserving under periodic boundary conditions.The numerical dispersion relation is investigated.Combined with splitting scheme,an explicit splitting symplectic wavelet collocation method is also constructed.Numerical experiments illustrate that the proposed methods are efficient,have high spatial accuracy and can preserve energy conservation laws exactly.展开更多
基金supported by the National Natural Science Foundation of China(12271523,11901577,11971481,12071481)the National Key R&D Program of China(SQ2020YFA0709803)+5 种基金the Defense Science Foundation of China(2021-JCJQ-JJ-0538)the National Key Project(GJXM92579)the Natural Science Foundation of Hunan(2020JJ5652,2021JJ20053)the Research Fund of National University of Defense Technology(ZK19-37,ZZKY-JJ-21-01)the Science and Technology Innovation Program of Hunan Province(2021RC3082)the Research Fund of College of Science,National University of Defense Technology(2023-lxy-fhjj-002).
文摘We develop a class of conservative integrators for the regularized logarithmic Schr¨odinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.
基金supported by the National Key R&D Program of China(2020YFA0709800)the National Natural Science Foundation of China(Nos.11901577,11971481,12071481,12001539)+4 种基金the Natural Science Foundation of Hunan(No.S2017JJQNJJ-0764)the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(No.2018MMAEZD004)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)the Research Fund of National University of Defense Technology(No.ZK19-37)The science and technology innovation Program of Hunan Province(No.2020RC2039).
文摘Block boundary value methods(BBVMs)are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation(DDAESP).It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP.Besides,whenever the classic Lipschitz conditions are satisfied,the extended BBVMs are preconsistent and pth order consistent.Moreover,through some numerical examples,the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.
基金the National Key R&D Program of China(No.2020YFA0709800)the National Key Project(No.GJXM92579)the National Natural Science Foundation of China(No.12071481)。
文摘We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier.Based on the second-order finite-difference semidiscretization in the spatial direction,the integrating factor Runge-Kutta schemes are applied in the temporal direction.Theoretical analysis indicates that the proposed schemes conserve mass and preserve the maximum principle under reasonable time step-size restriction,which is independent of the space step size.Finally,the theoretical analysis is verified by several numerical examples.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金sponsored by the Natural Science Foundation of Hebei Province,H2012406018,H2013406096a grant from Hebei Province Department of Education,No.2006301
文摘Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11501570,91530106 and 11571366)Research Fund of NUDT(Grant Nos.JC15-02-02,ZK16-03-53),and the fund from HPCL.
文摘We modify the construction of the third order finite volume WENO scheme on triangular meshes and present a simplified WENO(SWENO)scheme.The novelty of the SWENO scheme is the less complexity and lower computational cost when deciding the smoothest stencil through a simple mechanism.The LU decomposition with iterative refinement is adopted to implement ill-conditioned interpolation matrices and improves the stability of the SWENOscheme efficiently.Besides,a scaling technique is used to circument the growth of condition numbers as mesh refined.However,weak oscillations still appear when the SWENO scheme deals with complex low density equations.In order to guarantee the maximum-principle-preserving(MPP)property,we apply a scaling limiter to the reconstruction polynomial without the loss of accuracy.A novel procedure is designed to prove this property theoretically.Finally,numerical examples for one-and two-dimensional problems are presented to verify the good performance,maximum principle preserving,essentially non-oscillation and high resolution of the proposed scheme.
文摘The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. The IIM is capable of treating a discontinuity in the drift of Fokker-Planck equation and it is readily extended to the dry and viscous friction model. Analytic results of the considered model are used to confirm the effectiveness and design accuracy of the scheme.
基金The work is supported by the Basic Research Foundation of the National NumericalWind Tunnel Project(Grant No.NNW2018-ZT4A08)the National Natural Science Foundation(Grant No.11972370)the National Key Project(Grant No.GJXM92579)of China.
文摘It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11501570,91530106 and 11571366)Research Fund ofNUDT(Grant No.JC15-02-02)the fund from HPCL.
文摘This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws.The proposed algorithms can preserve corresponding conformal multi-symplectic conservation lawand conformalmomentum conservation lawin any local time-space region,respectively.Moreover,it is further shown that the algorithms admit the conformal charge conservation law,and exactly preserve the dissipation rate of charge under appropriate boundary conditions.Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.
基金the open foundations of State Key Laboratory of High Performance Computing and State Key Laboratory of Aerodynamics.Y.C.gratefully acknowledges support from NUDT’s Innovation Foundation(Grant No.B110205)H.Z.was supported by the Natural Science Foundation of China(Grant No.11301525).
文摘In this paper,we propose two new explicit multi-symplectic splitting methods for the nonlinear Dirac(NLD)equation.Based on its multi-symplectic formulation,the NLD equation is split into one linear multi-symplectic system and one nonlinear infinite Hamiltonian system.Then multi-symplectic Fourier pseudospectral method and multi-symplectic Preissmann scheme are employed to discretize the linear subproblem,respectively.And the nonlinear subsystem is solved by a symplectic scheme.Finally,a composition method is applied to obtain the final schemes for the NLD equation.We find that the two proposed schemes preserve the total symplecticity and can be solved explicitly.Numerical experiments are presented to show the effectiveness of the proposed methods.
基金Singapore MOE ARC 29/07 T207B2202,MOE RG 59/08 M52110092,NRF 2007IDM-IDM 002-010Natural Science Foundation of China 10971226 and 91130013,973 Program of China 2009CB723800the foundation of State Key Laboratory of Aerodynamics.
文摘A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique(AFT)and conforming Delaunay triangulation.Given a triangulated surface mesh,AFT is firstly applied to mesh several layers of elements adjacent to the boundary.The rest of the domain is then meshed by the conforming Delaunay triangulation.The non-conformal interface between two parts of meshes are adjusted.Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality.Robustness and quality of the proposed method is shown.Convergence proof of each stage as well as the whole algorithm is provided.Various numerical examples are included as well as the quality of the meshes.
基金This work was supported by National Natural Science Foundation of China(Grant No.91648204)National Key Research and Development Program of China(Grant No.2016YFB0201301)Science Challenge Project(Nos.JCKY2016212A502,TZ2016002).
文摘The Degasperis-Procesi(DP)equation is split into a system of a hyperbolic equation and an elliptic equation.For the hyperbolic equation,we use an optimized finite difference weighted essentially non-oscillatory(OWENO)scheme.New smoothness measurement is presented to approximate the typical shockpeakon structure in the solution to the DP equation,which evidently reduces the dissipation arising from discontinuities simultaneously removing nonphysical oscillations.For the elliptic equation,the Fourier pseudospectral method(FPM)is employed to discretize the high order derivative.Due to the combination of the WENO reconstruction and FPM,the splitting method shows an excellent performance in capturing the formation and propagation of shockpeakon solutions.The numerical simulations for different solutions of the DP equation are conducted to illustrate the high accuracy and capability of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.91130013,10971226,and 11001270)Hunan Provincial Innovation Foundation(Grant Nos.CX2011B011,and CX2012B010)+1 种基金the Innovation Fund of NUDT(Grant No.B120205)Chinese Scholarship Council.
文摘In this paper,we propose a wavelet collocation splitting(WCS)method,and a Fourier pseudospectral splitting(FPSS)method as comparison,for solving onedimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics.The two methods can preserve the intrinsic properties of original problems as much as possible.The splitting technique increases the computational efficiency.Meanwhile,the error estimation and some conservative properties are investigated.It is proved to preserve the charge conservation exactly.The global energy and momentum conservation laws can be preserved under several conditions.Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.
基金This research was partially supported by the Natural Science Foundation of China(Grant No.10971226 and No.11001270)the 973 Project of China(Grant No.2009CB723802-4).
文摘In this paper,we develop a multi-symplectic wavelet collocation method for three-dimensional(3-D)Maxwell’s equations.For the multi-symplectic formulation of the equations,wavelet collocation method based on autocorrelation functions is applied for spatial discretization and appropriate symplectic scheme is employed for time integration.Theoretical analysis shows that the proposed method is multi-symplectic,unconditionally stable and energy-preserving under periodic boundary conditions.The numerical dispersion relation is investigated.Combined with splitting scheme,an explicit splitting symplectic wavelet collocation method is also constructed.Numerical experiments illustrate that the proposed methods are efficient,have high spatial accuracy and can preserve energy conservation laws exactly.