This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Deve...This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Development Corporation were used to create hybrids. The determination of fatty acid composition was carried out by using a gas chromatography (GC) apparatus coupled by a flame ion detector (FID). Tocopherol and tocotrienol analysis was performed by upper high-performance liquid chromatography (UHPLC). Information on the impact of the genotype on the cocoa fat composition was provided. The major fatty acids (FA) in fermented samples are stearic (34.57%), palmitic (26.13%), oleic (34.13%) and linoleic (3.16%) acids. (35.05% to 35.6%). SCA12 × ICS40, SCA12 × SNK13, SNK13 × T79/501 have the least hard cocoa butters. Tocopherols analysis showed a predominance of γ-tocopherols (94.64 ± 1.51 to 292.16 ± 3.17 µg∙g<sup>−1</sup>), whereas only a small amount of β and δ-tocopherol (from 0.46 to 2.78 µg∙g<sup>−1</sup> and 0.12 to 5.82 respectively) was observed. No γ-tocotrienol was found in fermented samples. A differentiation in terms of total fat and tocopherol content was observed amongst hybrids with the same mother-clone, suggesting an impact of pollen on these compounds.展开更多
文摘This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Development Corporation were used to create hybrids. The determination of fatty acid composition was carried out by using a gas chromatography (GC) apparatus coupled by a flame ion detector (FID). Tocopherol and tocotrienol analysis was performed by upper high-performance liquid chromatography (UHPLC). Information on the impact of the genotype on the cocoa fat composition was provided. The major fatty acids (FA) in fermented samples are stearic (34.57%), palmitic (26.13%), oleic (34.13%) and linoleic (3.16%) acids. (35.05% to 35.6%). SCA12 × ICS40, SCA12 × SNK13, SNK13 × T79/501 have the least hard cocoa butters. Tocopherols analysis showed a predominance of γ-tocopherols (94.64 ± 1.51 to 292.16 ± 3.17 µg∙g<sup>−1</sup>), whereas only a small amount of β and δ-tocopherol (from 0.46 to 2.78 µg∙g<sup>−1</sup> and 0.12 to 5.82 respectively) was observed. No γ-tocotrienol was found in fermented samples. A differentiation in terms of total fat and tocopherol content was observed amongst hybrids with the same mother-clone, suggesting an impact of pollen on these compounds.