The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabili...The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.展开更多
Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This ...Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This paper reports newly obtained whole-rock compositions and zircon U-Pb ages for the Tieluping syenogranite porphyry(TLP)and Huoshenmiao alkali granite porphyry(HSM)in the SNCC.Zircons from the TLP and HSM have U-Pb ages of 1805±12 and 1792±14 Ma,respectively.These ages are taken to date the emplacement of these intrusions.They had high total alkali contents(K_(2)O+Na_(2)O>7.13 wt.%),with high 10000×Ga/Al ratios(3.06–3.41)and Zr+Y+Nb+Ce values(709 ppm–910 ppm)as well as high zircon saturation temperatures(864–970℃),indicative of A-type granite affinities.High Y/Nb(1.75–3.32),Ce/Nb(7.72–9.72),and Yb/Ta(2.89–5.60)ratios suggested that TLP and HSM belonged to the A2-type granite.The negative whole rockε_(Nd)(t)values(−8.4 to−6.6)and negative zirconε_(Hf)(t)values(−15.9 to−6.3)confirmed that TLP and HSM were likely generated by the partial melting of an ancient continental crust.TheεHf(t)(−7.4 to+4.0)values of inherited zircons in the TLP suggested that they were derived from the partial melting of Archean basement rocks.Considering the geochemical similarity of the 1.80 Ga A-type granitoids in the SNCC,we propose that the TLP and HSM were formed in a post-collisional regime that was likely associated with the break-off of the Paleoproterozoic subducted slab.Upwelling of the asthenosphere provided huge heat to generate the regional 1.80 Ga A-type granite in the SNCC.展开更多
The goal of steganalysis is to detect whether the cover carries the secret information which is embedded by steganographic algorithms.The traditional ste-ganalysis detector is trained on the stego images created by a ...The goal of steganalysis is to detect whether the cover carries the secret information which is embedded by steganographic algorithms.The traditional ste-ganalysis detector is trained on the stego images created by a certain type of ste-ganographic algorithm,whose detection performance drops rapidly when it is applied to detect another type of steganographic algorithm.This phenomenon is called as steganographic algorithm mismatch in steganalysis.To resolve this pro-blem,we propose a deep learning driven feature-based approach.An advanced steganalysis neural network is used to extract steganographic features,different pairs of training images embedded with steganographic algorithms can obtain diverse features of each algorithm.Then a multi-classifier implemented as lightgbm is used to predict the matching algorithm.Experimental results on four types of JPEG steganographic algorithms prove that the proposed method can improve the detection accuracy in the scenario of steganographic algorithm mismatch.展开更多
Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(...Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.展开更多
Catheterization is indispensable in the field of modern medicine.However,catheter-related thrombosis and infections almost inevitably occur during the process,and as drugs can only be administered at the end of cathet...Catheterization is indispensable in the field of modern medicine.However,catheter-related thrombosis and infections almost inevitably occur during the process,and as drugs can only be administered at the end of catheter,auxiliary strategies are required for successful implantation.Considering these intractable limitations,a type of self-adaptive,anti-coagulate liquidbased fibrous catheter has been developed.More importantly,it has positional drug release property that traditional catheters desperately need but couldn’t attain.Although enlightening,the feasibility and performance of the positional drug release have only been demonstrated by fluorescents,the specific drug release kinetics remains unknown for adaptation to application scenarios.Therefore,we systematically investigate the structural and interfacial effects of drug molecules and fibrous matrixes on drug release kinetics in a liquid-based fibrous catheter.Theoretical calculations and experiments demonstrate that oleophilic and hydrophilic molecules release slowly due to a dissolution-diffusion mechanism.Amphipathic molecules,however,will significantly affect the gating performance by affecting the interfacial stability,hence they release quickly with emulsifying the gating liquid.Besides the significant impact of molecular properties and interfacial effects,matrix pore size also has a slight influence that molecules release faster in bigger pores.Through this study,the liquid-based fibrous catheter may step further toward practical applications including chemotherapy,haemodialysis,angiography,etc.to overcome the existing catheter-related limitations.展开更多
Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from o...Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 mu mol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.52025132,21975209,22275156,21621091,22021001,22005255,and T2241022)the National Science Foundation of Fujian Province of China(grant no.2022J02059)+4 种基金the Fundamental Research Funds for the Central Universities of China(grant nos.20720220019 and 20720220085)the 111 Project(grant nos.B17027 and B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(grant no.RD2022070601)the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(grant no.KFKT202221)the Tencent Foundation(The XPLORER PRIZE).
文摘The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.
基金supported by the Natural Science Foundation of China(NSFC,Nos.U1603245,41703051,and U1812402)the Chinese Academy of Sciences“Light of West China”Program,and the Natural Science Foundation of Guizhou Province(No.[2018]1171).
文摘Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton(SNCC),providing important information for understanding the Paleoproterozoic tectonic regimes in this area.This paper reports newly obtained whole-rock compositions and zircon U-Pb ages for the Tieluping syenogranite porphyry(TLP)and Huoshenmiao alkali granite porphyry(HSM)in the SNCC.Zircons from the TLP and HSM have U-Pb ages of 1805±12 and 1792±14 Ma,respectively.These ages are taken to date the emplacement of these intrusions.They had high total alkali contents(K_(2)O+Na_(2)O>7.13 wt.%),with high 10000×Ga/Al ratios(3.06–3.41)and Zr+Y+Nb+Ce values(709 ppm–910 ppm)as well as high zircon saturation temperatures(864–970℃),indicative of A-type granite affinities.High Y/Nb(1.75–3.32),Ce/Nb(7.72–9.72),and Yb/Ta(2.89–5.60)ratios suggested that TLP and HSM belonged to the A2-type granite.The negative whole rockε_(Nd)(t)values(−8.4 to−6.6)and negative zirconε_(Hf)(t)values(−15.9 to−6.3)confirmed that TLP and HSM were likely generated by the partial melting of an ancient continental crust.TheεHf(t)(−7.4 to+4.0)values of inherited zircons in the TLP suggested that they were derived from the partial melting of Archean basement rocks.Considering the geochemical similarity of the 1.80 Ga A-type granitoids in the SNCC,we propose that the TLP and HSM were formed in a post-collisional regime that was likely associated with the break-off of the Paleoproterozoic subducted slab.Upwelling of the asthenosphere provided huge heat to generate the regional 1.80 Ga A-type granite in the SNCC.
基金supported by the National Natural Science Foundation of China (NSFC)under grant No.U1836102Anhui Science and Technology Key Special Program under the grant No.201903a050200162020 Domestic Visiting and Training Program for Outstanding Young Backbone Talents in Colleges and Universities under the grant No.gxgnfx2020132.
文摘The goal of steganalysis is to detect whether the cover carries the secret information which is embedded by steganographic algorithms.The traditional ste-ganalysis detector is trained on the stego images created by a certain type of ste-ganographic algorithm,whose detection performance drops rapidly when it is applied to detect another type of steganographic algorithm.This phenomenon is called as steganographic algorithm mismatch in steganalysis.To resolve this pro-blem,we propose a deep learning driven feature-based approach.An advanced steganalysis neural network is used to extract steganographic features,different pairs of training images embedded with steganographic algorithms can obtain diverse features of each algorithm.Then a multi-classifier implemented as lightgbm is used to predict the matching algorithm.Experimental results on four types of JPEG steganographic algorithms prove that the proposed method can improve the detection accuracy in the scenario of steganographic algorithm mismatch.
基金supported by the National Natural Science Foundation of China (Nos. 22061019, 21861018, 22161019 and 12174172)the NSF of Jiangxi Province (No. 20202ACBL213001)+4 种基金Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(No. 20212BCD42018)Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University (No. MJUKF-FMSM202010)the Youth Jinggang Scholars Program in Jiangxi Province (No.QNJG2019053)the Two Thousand Program in Jiangxi Province (No.jxsq2019201068)the Special Foundation for Postgraduate Innovation in Jiangxi Province (No. YC_(2)020-B155)。
文摘Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.
基金This work was supported by the National Natural Science Foundation of China(52025132,21975209,21621091,22021001,22121001)the National Key R&D Program of China(2018YFA0209500)+4 种基金the National Science Foundation of Fujian Province of China(2022J02059)the Fundamental Research Funds for the Central Universities of China(20720220085)the 111 Project(B17027,B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2022070601)the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety,CAS(No:NSKF202008).
文摘Catheterization is indispensable in the field of modern medicine.However,catheter-related thrombosis and infections almost inevitably occur during the process,and as drugs can only be administered at the end of catheter,auxiliary strategies are required for successful implantation.Considering these intractable limitations,a type of self-adaptive,anti-coagulate liquidbased fibrous catheter has been developed.More importantly,it has positional drug release property that traditional catheters desperately need but couldn’t attain.Although enlightening,the feasibility and performance of the positional drug release have only been demonstrated by fluorescents,the specific drug release kinetics remains unknown for adaptation to application scenarios.Therefore,we systematically investigate the structural and interfacial effects of drug molecules and fibrous matrixes on drug release kinetics in a liquid-based fibrous catheter.Theoretical calculations and experiments demonstrate that oleophilic and hydrophilic molecules release slowly due to a dissolution-diffusion mechanism.Amphipathic molecules,however,will significantly affect the gating performance by affecting the interfacial stability,hence they release quickly with emulsifying the gating liquid.Besides the significant impact of molecular properties and interfacial effects,matrix pore size also has a slight influence that molecules release faster in bigger pores.Through this study,the liquid-based fibrous catheter may step further toward practical applications including chemotherapy,haemodialysis,angiography,etc.to overcome the existing catheter-related limitations.
基金financial support from the National Natural Science Foundation of China(Grants Nos.91229204 and 81220108025)Major Project of Chinese National Programs for Fundamental Research and Development(No.2015CB910304)+2 种基金National High Technology Research and Development Program of China(No.2012AA020302)National Basic Research Program of China(No.2012CB518005)National S&T Major Projects(Nos.2012ZX09103101-072,2014ZX09507002-001,and 2013ZX09507-001)
文摘Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 mu mol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. (C) 2016 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.