Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)prese...As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.展开更多
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金supported by the National Natural Science Foundation of China(52276202)the Tsinghua-Toyota Joint Research Fund.
文摘As global municipal solid waste(MSW)quantities continue to escalate,serious socio-environmental challenges arise,necessitating innovative solutions.Waste-to-hydrogen(WTH)via two-stage gasification-reforming(TSGR)presents an emergent technology for MSW upcycling,offering to ease waste management burdens and bolster the burgeoning hydrogen economy.Despite early initiatives to advance TSGR technology,a cohesive and critical analysis of cutting-edge knowledge and strategies to enhance hydrogen production remains lacking.This review aggregates literature on MSW upcycling to hydrogen via TSGR,with a focus on optimizing process control and catalytic efficiency.It underscores technological avenues to augment hydrogen output,curtail catalyst costs,and refine system performance.Particularly,the review illuminates the potential for integrating chemical and calcium looping into TSGR processes,identifying opportunities,and pinpointing challenges.The review concludes with a summary of the current state of techno-economic analysis for this technology,presenting outstanding challenges and future research directions,with the ultimate goal of transitioning WTH from theoretical to practical application.