Mapping in the dynamic environment is an important task for autonomous mobile robots due to the unavoidable changes in the workspace. In this paper, we propose a framework for RGBD SLAM in low dynamic environment, whi...Mapping in the dynamic environment is an important task for autonomous mobile robots due to the unavoidable changes in the workspace. In this paper, we propose a framework for RGBD SLAM in low dynamic environment, which can maintain a map keeping track of the latest environment. The main model describing the environment is a multi-session pose graph, which evolves over the multiple visits of the robot. The poses in the graph will be pruned when the 3D point scans corresponding to those poses are out of date. When the robot explores the new areas, its poses will be added to the graph. Thus the scans kept in the current graph will always give a map of the latest environment. The changes of the environment are detected by out-of-dated scans identification module through analyzing scans collected at different sessions. Besides, a redundant scans identification module is employed to further reduce the poses with redundant scans in order to keep the total number of poses in the graph with respect to the size of environment. In the experiments, the framework is first tuned and tested on data acquired by a Kinect from laboratory environment. Then the framework is applied to external dataset acquired by a Kinect II from a workspace of an industrial robot in another country, which is blind to the development phase, for further validation of the performance. After this two-step evaluation, the proposed framework is considered to be able to manage the map in date in dynamic or static environment with a noncumulative complexity and acceptable error level.展开更多
基金This work is supported by the National Natural Science Foundation of China (Grant No. NSFC: 61473258, U 1509210), and the Joint Centre for Robotics Research (JCRR) between Zhejiang University and the University of Technology, Sydney.
文摘Mapping in the dynamic environment is an important task for autonomous mobile robots due to the unavoidable changes in the workspace. In this paper, we propose a framework for RGBD SLAM in low dynamic environment, which can maintain a map keeping track of the latest environment. The main model describing the environment is a multi-session pose graph, which evolves over the multiple visits of the robot. The poses in the graph will be pruned when the 3D point scans corresponding to those poses are out of date. When the robot explores the new areas, its poses will be added to the graph. Thus the scans kept in the current graph will always give a map of the latest environment. The changes of the environment are detected by out-of-dated scans identification module through analyzing scans collected at different sessions. Besides, a redundant scans identification module is employed to further reduce the poses with redundant scans in order to keep the total number of poses in the graph with respect to the size of environment. In the experiments, the framework is first tuned and tested on data acquired by a Kinect from laboratory environment. Then the framework is applied to external dataset acquired by a Kinect II from a workspace of an industrial robot in another country, which is blind to the development phase, for further validation of the performance. After this two-step evaluation, the proposed framework is considered to be able to manage the map in date in dynamic or static environment with a noncumulative complexity and acceptable error level.