Based on the effective mass approximation, the Schrodinger equation and Poisson equation in GaAs/AlGaAs multi-quantum wells(MQWs) are self-consistently solved to obtain the wave functions and energy levels of electron...Based on the effective mass approximation, the Schrodinger equation and Poisson equation in GaAs/AlGaAs multi-quantum wells(MQWs) are self-consistently solved to obtain the wave functions and energy levels of electrons in the conduction band for the ground first excited state by considering a lateral electric field(LEF). Then, the effects of size, ternary mixed crystal, doping concentration, and temperature on linear and nonlinear intersubband optical absorption coefficients(IOACs), and refractive index changes(RICs) due to the transition between ground states and the first excited states of electrons are discussed based on Fermi’s golden rule. The results show that, under a fixed LEF, with increase of A1 composition and doping concentration, the IOACs produce a red shift. With increases of both widths of the wells and barriers IOACs appear as blue shifts and their amplitudes increase, but the barrier width change is much more important to affect nonlinear IOACs, whereas increasing the temperature results in a blue shift first and then a red shift of IOACs. When the other parameters are fixed but there is an increase in the LEF, IOACs occur with a blue shift, and the RICs have similar properties.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61764012)
文摘Based on the effective mass approximation, the Schrodinger equation and Poisson equation in GaAs/AlGaAs multi-quantum wells(MQWs) are self-consistently solved to obtain the wave functions and energy levels of electrons in the conduction band for the ground first excited state by considering a lateral electric field(LEF). Then, the effects of size, ternary mixed crystal, doping concentration, and temperature on linear and nonlinear intersubband optical absorption coefficients(IOACs), and refractive index changes(RICs) due to the transition between ground states and the first excited states of electrons are discussed based on Fermi’s golden rule. The results show that, under a fixed LEF, with increase of A1 composition and doping concentration, the IOACs produce a red shift. With increases of both widths of the wells and barriers IOACs appear as blue shifts and their amplitudes increase, but the barrier width change is much more important to affect nonlinear IOACs, whereas increasing the temperature results in a blue shift first and then a red shift of IOACs. When the other parameters are fixed but there is an increase in the LEF, IOACs occur with a blue shift, and the RICs have similar properties.