期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficient method to calculate the eigenvalues of the Zakharov–Shabat system
1
作者 崔世坤 王振 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期243-249,共7页
A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential ... A numerical method is proposed to calculate the eigenvalues of the Zakharov–Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov–Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov–Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma–Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems. 展开更多
关键词 Zakharov–Shabat system EIGENVALUE numerical method Chebyshev polynomials
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部