目的探讨复杂胫骨平台骨折患者应用3D打印技术辅助改良后内侧倒L入路切开复位内固定术治疗的临床疗效及安全性。方法 41例复杂胫骨平台骨折患者根据治疗方式分为3D组18例和常规组23例,2组均行改良后内侧倒L入路切开复位内固定术。常规...目的探讨复杂胫骨平台骨折患者应用3D打印技术辅助改良后内侧倒L入路切开复位内固定术治疗的临床疗效及安全性。方法 41例复杂胫骨平台骨折患者根据治疗方式分为3D组18例和常规组23例,2组均行改良后内侧倒L入路切开复位内固定术。常规组术前行膝关节CT平扫,3D组在常规组基础上采用3D技术打印实体模型并在实体模型上模拟手术。比较2组手术时间、术中出血量、手术并发症发生率,以及术后第3天胫骨平台骨折复位放射学Rasmussen评分,术后12个月膝关节功能(hospital for special surgery,HSS)评分。结果 3D组手术时间[(127.3±11.7)min]较常规组[(167.4±15.8)min]短,术中出血量[(211.7±18.7)mL]较常规组[(291.6±25.3)mL]少,手术并发症发生率(5.55%)较常规组(26.08%)低,术后第3天Rasmussen评分及术后12个月HSS评分[(15.2±1.9)、(84.3±11.2)分]较常规组[(9.9±2.1)、(71.0±5.7)分]高(P<0.05)。结论复杂胫骨平台骨折患者行3D打印技术辅助改良后内侧倒L入路切开复位内固定术可缩短手术时间,减少术中出血量,提高骨折复位质量,改善膝关节功能,且并发症发生率低。展开更多
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covarianc...The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.展开更多
Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism ...Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines.Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5?RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.展开更多
Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was...Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photo-synthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, Lcp (28μmol·m-2·s-1), a light saturation point Lsp (>1800μmol·m-2·s-1), and a maximal net photosynthetic rate Pmax (9.96μmol·m-2·s-1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiencyα(0.066) but the lowest, Lcp (16μmol·m-2·s-1), Lsp (=800μmol·m-2·s-1), and Pmax (4.51μmol·m-2·s-1), which suggest that it is heliophilous plant. Korean pine showed the lowestαvalue but a higher Pmax, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both or and Pmax approached the upper limit of reported values in temperate forests, while Lcp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.展开更多
Based on analysis of mechanisms causing energy no-closure and nocturnal low fluxes issues for CO2 exchange studies by eddy covariance method, corrections were done with the raw data sets obtained from Changbai Mountai...Based on analysis of mechanisms causing energy no-closure and nocturnal low fluxes issues for CO2 exchange studies by eddy covariance method, corrections were done with the raw data sets obtained from Changbai Mountains forest flux site, to evaluate the impacts of sonic anemometer tilt, frequency response limitations and advection on estimation of CO2 exchange, respectively. The results show that the planar fit coordinate transforming method is superior to the streamline coordinate transforming method in tilt correction. The latter could cause a systematical underestimation of eddy fluxes relating with the angle of sensor and terrain tilt. The underestimation of CO2 and energy fluxes for frequency response limitations average 3.0% and 2.0% during daytime, respectively, which increase by 9.0% and 5.5% during nighttime, respectively. The corrections of frequency response limitations are closely related to atmospheric stability. The advection loss of CO2 fluxes is dominated by nocturnal vertical advection, which is at least 18% when the horizontal advection is neglected. It is suggested that more work be done to understand the characteristics of horizontal advection and turbulent eddies under a complexcircumstance.展开更多
Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been...Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.展开更多
Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl in...Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl indoles with hydrosilanes are developed.The photocatalytic reaction is carried out with 9,10-dicyanoanthracene(DCA)as an organophotocatalyst and 3-acetoxyquinuclidine as hydrogen atom transfer(HAT)catalyst at room temperature under metal-and oxidant-free conditions.The keys to the success of photoredox-catalytic conversion include(1)the reductive quenching of DCA^(*)[E_(1/2)(*P/P^(-))=+1.97 V vs.SCE in MeCN]by 3-acetoxyquinuclidine(E_(p)=+1.22 V vs.SCE in MeCN),and(2)the thermodynamic feasibility of hydrogen atom abstraction from hydridic Si-H bond by electrophilic N^(+·).Particularly,the simple photoinduced cascade cyclization using(TMS)3SiH with 2-aryl-N-acryloyl indoles was exploited via an electron-donor-acceptor(EDA)complex under visible light irradiation.展开更多
Aluminum alloy is widely applied to the aerospace field.However,the inspection of thin plates using Time-of-Flight Diffraction(TOFD)technique is restricted by the near-surface dead zone because of the coupling between...Aluminum alloy is widely applied to the aerospace field.However,the inspection of thin plates using Time-of-Flight Diffraction(TOFD)technique is restricted by the near-surface dead zone because of the coupling between diffracted longitudinal wave and lateral wave.The halfskip mode-converted wave is introduced to decrease dead zone and detect defects in aluminum alloy thin plates by increasing ray path and propagation time.The quantitative correlation for the diffracted shear wave from longitudinal back-wall wave is deduced in combination with the acoustic path,realizing the accurate location of shallow subsurface defects.Simulated and experimental results indicate that the dead zone is decreased by 38% by the half-skip mode-converted wave,and the location errors are within 5% for the aluminum alloy plate with a thickness of 7.0 mm.Compared to other alternative TOFD techniques,half-skip mode-converted wave has better response amplitude and positioning accuracy,demonstrating strong applicability in TOFD inspection of thin plates.展开更多
文摘目的探讨复杂胫骨平台骨折患者应用3D打印技术辅助改良后内侧倒L入路切开复位内固定术治疗的临床疗效及安全性。方法 41例复杂胫骨平台骨折患者根据治疗方式分为3D组18例和常规组23例,2组均行改良后内侧倒L入路切开复位内固定术。常规组术前行膝关节CT平扫,3D组在常规组基础上采用3D技术打印实体模型并在实体模型上模拟手术。比较2组手术时间、术中出血量、手术并发症发生率,以及术后第3天胫骨平台骨折复位放射学Rasmussen评分,术后12个月膝关节功能(hospital for special surgery,HSS)评分。结果 3D组手术时间[(127.3±11.7)min]较常规组[(167.4±15.8)min]短,术中出血量[(211.7±18.7)mL]较常规组[(291.6±25.3)mL]少,手术并发症发生率(5.55%)较常规组(26.08%)低,术后第3天Rasmussen评分及术后12个月HSS评分[(15.2±1.9)、(84.3±11.2)分]较常规组[(9.9±2.1)、(71.0±5.7)分]高(P<0.05)。结论复杂胫骨平台骨折患者行3D打印技术辅助改良后内侧倒L入路切开复位内固定术可缩短手术时间,减少术中出血量,提高骨折复位质量,改善膝关节功能,且并发症发生率低。
基金This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX1-SW-01-01A)the National Key Basic Research Development and Program(Grant No.2002CB412502)+1 种基金the National Natural Science Foundation of China(Grant No.30370293)Institute of Applied Ecology,CAS.
文摘The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.
基金supported by funds from the Rice Molecular Design Breeding (2016YFD0101801)the National Natural Science Foundation of China (91535102 and 31771760)the Open Research Fund of State Key Laboratory of Hybrid Rice (2016KF09)
文摘Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines.Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5?RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.
基金We would like to thank the Research Station of Changbai Mountain Forest Ecosystem, Chinese Academy of Sciences. This work was supported by the Na-tional Key Basic Research Development Program of China (Grant No. 2002CB412502) the National Natural Science Foundation of China (Grant No. 30370293)+1 种基金 Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX1-SW-01-01) the Frontier Project of Insti-tute of Applied Ecology, Chinese Academy of Sciences.
文摘Based on the light-photosynthesis response measurement at leaf level, combined with over- and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photo-synthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, Lcp (28μmol·m-2·s-1), a light saturation point Lsp (>1800μmol·m-2·s-1), and a maximal net photosynthetic rate Pmax (9.96μmol·m-2·s-1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiencyα(0.066) but the lowest, Lcp (16μmol·m-2·s-1), Lsp (=800μmol·m-2·s-1), and Pmax (4.51μmol·m-2·s-1), which suggest that it is heliophilous plant. Korean pine showed the lowestαvalue but a higher Pmax, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both or and Pmax approached the upper limit of reported values in temperate forests, while Lcp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.
基金This work was supported by the National Key Basic Research Development Program of China(Grant No.2002CB412502)the National Natural Science Foundation of China(Grant No.30370293)+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX1-SW-01-0lA)the Frontier Project of Institute of Applied Ecology,Chidemy of Sciences.
文摘Based on analysis of mechanisms causing energy no-closure and nocturnal low fluxes issues for CO2 exchange studies by eddy covariance method, corrections were done with the raw data sets obtained from Changbai Mountains forest flux site, to evaluate the impacts of sonic anemometer tilt, frequency response limitations and advection on estimation of CO2 exchange, respectively. The results show that the planar fit coordinate transforming method is superior to the streamline coordinate transforming method in tilt correction. The latter could cause a systematical underestimation of eddy fluxes relating with the angle of sensor and terrain tilt. The underestimation of CO2 and energy fluxes for frequency response limitations average 3.0% and 2.0% during daytime, respectively, which increase by 9.0% and 5.5% during nighttime, respectively. The corrections of frequency response limitations are closely related to atmospheric stability. The advection loss of CO2 fluxes is dominated by nocturnal vertical advection, which is at least 18% when the horizontal advection is neglected. It is suggested that more work be done to understand the characteristics of horizontal advection and turbulent eddies under a complexcircumstance.
基金financially supported by the Doctoral Foundation of Henan University of Technology(No.2021BS030)Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+1 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)。
文摘Transition metal dichalcogenides(TMDs)show great advantages in electromagnetic wave(EMW)absorption due to their unique structure and electrical properties.Tremendous research works on TMD-based EMW absorbers have been conducted in the last three years,and the comprehensive and systematical summary is still a rarity.Therefore,it is of great significance to elaborate on the interaction among the morphologies,structures,phases,components,and EMW absorption performances of TMD-based absorbers.This review is devoted to analyzing TMD-based absorbers from the following perspectives:the EMW absorption regulation strategies of TMDs and the latest progress of TMD-based hybrids as EMW absorbers.The absorption mechanisms and component-performance dependency of these achievements are also summarized.Finally,a straightforward insight into industrial revolution upgrading in this promising field is proposed.
基金the Tianshan Talents Program for Leading Talents in Science and Technology Innovation(No.2022TSYCLJ0016)the National Natural Science Foundation of China(Nos.21961037 and 22201241)+3 种基金the Program for Tianshan Innovative Research Team of Xinjiang Uygur Autonomous Region(No.2021D14011)the Graduate Innovation Project of Xinjiang Uygur Autonomous Region(No.XJ2021G036)the Key Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01D06)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Nos.2021D01E10 and 2022E01042).
文摘Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl indoles with hydrosilanes are developed.The photocatalytic reaction is carried out with 9,10-dicyanoanthracene(DCA)as an organophotocatalyst and 3-acetoxyquinuclidine as hydrogen atom transfer(HAT)catalyst at room temperature under metal-and oxidant-free conditions.The keys to the success of photoredox-catalytic conversion include(1)the reductive quenching of DCA^(*)[E_(1/2)(*P/P^(-))=+1.97 V vs.SCE in MeCN]by 3-acetoxyquinuclidine(E_(p)=+1.22 V vs.SCE in MeCN),and(2)the thermodynamic feasibility of hydrogen atom abstraction from hydridic Si-H bond by electrophilic N^(+·).Particularly,the simple photoinduced cascade cyclization using(TMS)3SiH with 2-aryl-N-acryloyl indoles was exploited via an electron-donor-acceptor(EDA)complex under visible light irradiation.
基金supported by the National Key Research and Development Program of China(No.2019YFA0709003)the National Natural Science Foundation of China(Nos.52275520 and 51775087).
文摘Aluminum alloy is widely applied to the aerospace field.However,the inspection of thin plates using Time-of-Flight Diffraction(TOFD)technique is restricted by the near-surface dead zone because of the coupling between diffracted longitudinal wave and lateral wave.The halfskip mode-converted wave is introduced to decrease dead zone and detect defects in aluminum alloy thin plates by increasing ray path and propagation time.The quantitative correlation for the diffracted shear wave from longitudinal back-wall wave is deduced in combination with the acoustic path,realizing the accurate location of shallow subsurface defects.Simulated and experimental results indicate that the dead zone is decreased by 38% by the half-skip mode-converted wave,and the location errors are within 5% for the aluminum alloy plate with a thickness of 7.0 mm.Compared to other alternative TOFD techniques,half-skip mode-converted wave has better response amplitude and positioning accuracy,demonstrating strong applicability in TOFD inspection of thin plates.