In eukaryotes,microtubule polymers are essential for cellular plasticity and fate decisions.End-binding(EB)proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dyna...In eukaryotes,microtubule polymers are essential for cellular plasticity and fate decisions.End-binding(EB)proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis.Here,we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid–liquid phase separation to compartmentalize the kinetochore–microtubule plus-end machinery,ensuring accurate kinetochore–microtubule interactions during chromosome segregation in mitosis.Perturbation of EB1–TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos.Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis,and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex,dissolves droplets in vitro,and harnesses accurate chromosome segregation.Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.展开更多
Prostate cancer(PCa)is the second most common malignancy among men globally.The Fu-Zheng-Yi-Liu(FZYL)Formula has been widely utilized in the treatment of PCa.This study investigates whether the FZYL Formula can inhibi...Prostate cancer(PCa)is the second most common malignancy among men globally.The Fu-Zheng-Yi-Liu(FZYL)Formula has been widely utilized in the treatment of PCa.This study investigates whether the FZYL Formula can inhibit PCa by tar-geting the TAMs/CCL5 pathway.We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their in-teraction.Results showed that the FZYL Formula significantly reduced the proliferation,colony formation,subpopulations of PCSCs,and sphere-formation efficacy of PCa cells,even in the presence of TAM co-culture.Additionally,the Formula markedly decreased the migration,invasion,and epithelial-mesenchymal transition(EMT)of PCa cells induced by TAMs.The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion,with minimal cytotoxicity observed.Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula,as the addition of exogen-ous CCL5 partially reversed the formula’s inhibitory effects on PCSCs self-renewal in the co-culture system.Importantly,the Formula also significantly inhibited the growth of PCa xenografts,bone metastasis,and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway.Overall,this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.展开更多
基金supported by grants from the National Key Research and Development Program of China(2022YFA1303100,2022YFA0806800,2022YFA1302700,and 2017YFA0503600)the National Natural Science Foundation of China(32090040,92153302,92254302,92253305,31621002,21922706,92059102,and 92253301)+1 种基金the Plans for Major Provincial Science&Technology Projects of Anhui Province(202303a0702003),the Ministry of Education(IRT_17R102)the Fundamental Research Funds for the Central Universities(KB9100000007 and KB9100000013).
文摘In eukaryotes,microtubule polymers are essential for cellular plasticity and fate decisions.End-binding(EB)proteins serve as scaffolds for orchestrating microtubule polymer dynamics and are essential for cellular dynamics and chromosome segregation in mitosis.Here,we show that EB1 forms molecular condensates with TIP150 and MCAK through liquid–liquid phase separation to compartmentalize the kinetochore–microtubule plus-end machinery,ensuring accurate kinetochore–microtubule interactions during chromosome segregation in mitosis.Perturbation of EB1–TIP150 polymer formation by a competing peptide prevents phase separation of the EB1-mediated complex and chromosome alignment at the metaphase equator in both cultured cells and Drosophila embryos.Lys220 of EB1 is dynamically acetylated by p300/CBP-associated factor in early mitosis,and persistent acetylation at Lys220 attenuates phase separation of the EB1-mediated complex,dissolves droplets in vitro,and harnesses accurate chromosome segregation.Our data suggest a novel framework for understanding the organization and regulation of eukaryotic spindle for accurate chromosome segregation in mitosis.
基金supported by the National Natural Science Foundation of China(No.82274512)Guangzhou Science and Technology Project(No.202201020327)+1 种基金Collaborative basic and clinical Innovation project between Guangdong Hospital of Chinese Medicine and the School of Biomedical Sciences of the Chinese University of Hong Kong(No.YN2018HK02)Guangdong basic and Applied basic Research Fund(No.2023A1515110708).
文摘Prostate cancer(PCa)is the second most common malignancy among men globally.The Fu-Zheng-Yi-Liu(FZYL)Formula has been widely utilized in the treatment of PCa.This study investigates whether the FZYL Formula can inhibit PCa by tar-geting the TAMs/CCL5 pathway.We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their in-teraction.Results showed that the FZYL Formula significantly reduced the proliferation,colony formation,subpopulations of PCSCs,and sphere-formation efficacy of PCa cells,even in the presence of TAM co-culture.Additionally,the Formula markedly decreased the migration,invasion,and epithelial-mesenchymal transition(EMT)of PCa cells induced by TAMs.The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion,with minimal cytotoxicity observed.Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula,as the addition of exogen-ous CCL5 partially reversed the formula’s inhibitory effects on PCSCs self-renewal in the co-culture system.Importantly,the Formula also significantly inhibited the growth of PCa xenografts,bone metastasis,and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway.Overall,this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.