通过模拟高浓度CO_2在农田土壤中的地下泄漏,研究了不同浓度CO_2泄漏情景下土壤微生物多样性的变化。实验设置了400 g m^(-2) d^(-1)、800 g m^(-2) d^(-1)、1 200 g m^(-2) d^(-1)和2 000 g m^(-2) d^(-1)持续CO_2通气60 d共计4个处理...通过模拟高浓度CO_2在农田土壤中的地下泄漏,研究了不同浓度CO_2泄漏情景下土壤微生物多样性的变化。实验设置了400 g m^(-2) d^(-1)、800 g m^(-2) d^(-1)、1 200 g m^(-2) d^(-1)和2 000 g m^(-2) d^(-1)持续CO_2通气60 d共计4个处理,并与对照组、恢复组(2 000 g m^(-2) d^(-1)组停止通气60 d后)分期采集土壤样品,分析土壤理化性质、土壤闭蓄的气体浓度、微生物多样性指数及主要类群变化规律。结果表明,4种处理均提高了土壤中CO_2浓度,分别为1.60%、4.80%、10.80%和19.60%。土壤微生物多样性Chao指数和Shannon指数随CO_2通入量增加而减少,降幅分别达17.00%~27.80%和6.10%~9.50%。相反,非度量多维尺度(NMDS)分析显示土壤微生物β多样性在中、低浓度升高,在高、极端浓度表现为降低。拟杆菌属(Bacteroidales)相对丰度随CO_2泄漏量增加从3.09%上升至21.20%,可作为高浓度CO_2泄漏生态安全性评估的敏感性指标。基于高通量序列相似度OTU分类的RDA分析表明土壤环境因子的变化能够较好地解释微生物多样性演替。研究结果为评估和监测地下CO_2泄漏对近地表生态系统环境风险提供科学依据。展开更多
文摘通过模拟高浓度CO_2在农田土壤中的地下泄漏,研究了不同浓度CO_2泄漏情景下土壤微生物多样性的变化。实验设置了400 g m^(-2) d^(-1)、800 g m^(-2) d^(-1)、1 200 g m^(-2) d^(-1)和2 000 g m^(-2) d^(-1)持续CO_2通气60 d共计4个处理,并与对照组、恢复组(2 000 g m^(-2) d^(-1)组停止通气60 d后)分期采集土壤样品,分析土壤理化性质、土壤闭蓄的气体浓度、微生物多样性指数及主要类群变化规律。结果表明,4种处理均提高了土壤中CO_2浓度,分别为1.60%、4.80%、10.80%和19.60%。土壤微生物多样性Chao指数和Shannon指数随CO_2通入量增加而减少,降幅分别达17.00%~27.80%和6.10%~9.50%。相反,非度量多维尺度(NMDS)分析显示土壤微生物β多样性在中、低浓度升高,在高、极端浓度表现为降低。拟杆菌属(Bacteroidales)相对丰度随CO_2泄漏量增加从3.09%上升至21.20%,可作为高浓度CO_2泄漏生态安全性评估的敏感性指标。基于高通量序列相似度OTU分类的RDA分析表明土壤环境因子的变化能够较好地解释微生物多样性演替。研究结果为评估和监测地下CO_2泄漏对近地表生态系统环境风险提供科学依据。