目的系统评价ⅠB2-ⅡB期宫颈癌新辅助治疗联合手术与根治性同步放化疗模式有效性及安全性差异。方法计算机检索Pubmed、Embase、Cochrane Library、Web of Science、中国生物医学文献数据库、万方、中国知网和维普等数据库,查找新辅助...目的系统评价ⅠB2-ⅡB期宫颈癌新辅助治疗联合手术与根治性同步放化疗模式有效性及安全性差异。方法计算机检索Pubmed、Embase、Cochrane Library、Web of Science、中国生物医学文献数据库、万方、中国知网和维普等数据库,查找新辅助治疗联合手术对比根治性同步放化疗ⅠB2-ⅡB期宫颈癌临床对照研究相关文献。使用Review Manager 5.3统计软件对生存资料及不良反应进行Meta分析。结果纳入9篇文献,共计3914例患者。两组有相近总生存(HR=0.83,P=0.31)和无进展生存(HR=0.85,P=0.57);新辅助治疗组放射性肠炎发生率低(RR=0.27,P=0.03),但两组间放射性膀胱炎发生率(RR=0.30,P=0.34)和≥3级中性粒细胞骨髓抑制发生率(RR=0.77,P=0.46)相近。结论ⅠB2-ⅡB期宫颈癌两种治疗模式生存获益相当,新辅助治疗组放射性肠炎发生率较低,但两组间放射性膀胱炎和≥3级中性粒细胞骨髓抑制发生率相近。新辅助治疗联合手术较标准治疗方案并未带来更多的优越性。展开更多
The effects of composite supports of CeO2-Al2O3, MgO-Al2O3, TiO2-Al2O3 or ZrO2-Al2O3 on the methanation activity of supported Co-Mo-based sulphur-resistant catalysts were investigated. The catalysts were further chara...The effects of composite supports of CeO2-Al2O3, MgO-Al2O3, TiO2-Al2O3 or ZrO2-Al2O3 on the methanation activity of supported Co-Mo-based sulphur-resistant catalysts were investigated. The catalysts were further characterized by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy. The catalyst of 5%CoO-15%MoO3 supported on CeO2-Al2O3, MgO-Al2O3, TiO2-Al2O3 or ZrO2-Al2O3 composite oxides, respectively, showed different catalytic performances of syngas methanation in the presence of hydrogen sulphide as compared with that of the 5%CoO-15%MoO3/Al2O3 catalyst. The Co-Mo/CeO2-Al2O3 catalyst shows the highest methanation activity among the tested catalysts. The enhanced methanation activity may be attributed to the improvement of the dispersion of active metal species and the inhibition of the formation of S6+.展开更多
The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MOO3/ A1203 catalyst b...The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MOO3/ A1203 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-A1203 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.展开更多
The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method a...The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method and characterized by N2-adsorption, X-ray diffraction(XRD), temperature-programmed reduction(TPR) and laser Raman spectroscopy(LRS). The conversions of CO for Mo-Co/Al, Co-Mo/Al and CoMo/Al catalysts were 59.7%, 54.3% and 53.9%, respectively. Among these catalysts, the Mo-Co/Al catalyst prepared stepwisely by impregnating Mo precursor firstly showed the best catalytic performance. Meanwhile, the conversions of CO were 48.9% for Mo/Al catalyst and 10.5% for Co/Al catalyst. The addition of cobalt species could improve the catalytic activity of Mo/Al catalyst. The N2-adsorption results showed that Co-Mo/Al catalyst had the smallest specific surface area among these catalysts. CoMoO4species in CoMo/Al catalyst were detected with XRD, TPR and LRS. Moreover, crystal MoS2which was reported to be less active than amorphous MoS2was found in both Co-Mo/Al and CoMo/Al catalysts. Mo-Co/Al catalyst showed the best catalytic performance as it had an appropriate surface structure, i.e., no crystal MoS2and very little CoMoO4species.展开更多
文摘The effects of composite supports of CeO2-Al2O3, MgO-Al2O3, TiO2-Al2O3 or ZrO2-Al2O3 on the methanation activity of supported Co-Mo-based sulphur-resistant catalysts were investigated. The catalysts were further characterized by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy. The catalyst of 5%CoO-15%MoO3 supported on CeO2-Al2O3, MgO-Al2O3, TiO2-Al2O3 or ZrO2-Al2O3 composite oxides, respectively, showed different catalytic performances of syngas methanation in the presence of hydrogen sulphide as compared with that of the 5%CoO-15%MoO3/Al2O3 catalyst. The Co-Mo/CeO2-Al2O3 catalyst shows the highest methanation activity among the tested catalysts. The enhanced methanation activity may be attributed to the improvement of the dispersion of active metal species and the inhibition of the formation of S6+.
文摘The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MOO3/ A1203 catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO3/25%-CeO2-A1203 catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.
文摘The effect of promoter cobalt and the sequences of adding cobalt and molybdenum precursors on the performance of sulfur-resistant methanation were investigated. All these samples were prepared by impregnation method and characterized by N2-adsorption, X-ray diffraction(XRD), temperature-programmed reduction(TPR) and laser Raman spectroscopy(LRS). The conversions of CO for Mo-Co/Al, Co-Mo/Al and CoMo/Al catalysts were 59.7%, 54.3% and 53.9%, respectively. Among these catalysts, the Mo-Co/Al catalyst prepared stepwisely by impregnating Mo precursor firstly showed the best catalytic performance. Meanwhile, the conversions of CO were 48.9% for Mo/Al catalyst and 10.5% for Co/Al catalyst. The addition of cobalt species could improve the catalytic activity of Mo/Al catalyst. The N2-adsorption results showed that Co-Mo/Al catalyst had the smallest specific surface area among these catalysts. CoMoO4species in CoMo/Al catalyst were detected with XRD, TPR and LRS. Moreover, crystal MoS2which was reported to be less active than amorphous MoS2was found in both Co-Mo/Al and CoMo/Al catalysts. Mo-Co/Al catalyst showed the best catalytic performance as it had an appropriate surface structure, i.e., no crystal MoS2and very little CoMoO4species.