期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Contemporary kinematic models and moment deficit of Chinese mainland 被引量:1
1
作者 Zhangjun Li Jinwei Ren shanlan qin 《Geodesy and Geodynamics》 2017年第3期181-186,共6页
There are lots of achievements about kinematics of Chinese mainland and its vicinity determined from historic earthquake data, Quaternary fault rates and geodesy observations, which provide basic data for analysis of ... There are lots of achievements about kinematics of Chinese mainland and its vicinity determined from historic earthquake data, Quaternary fault rates and geodesy observations, which provide basic data for analysis of seismic hazard in study areas. Based on impreciseness in using energy of 47 earthquakes with magnitude greater than 7.0 in previous study, we firstly collected source parameters, surface ruptures and displacements of major earthquakes carefully, and divided them into small segmentations with these data gathered. Secondly, we determined contemporary deformation field from latest earthquake mechanisms, Quaternary fault slip rates and geodesy observations. Finally, we evaluated moment deficit of study areas from historic earthquake data and predicted deformation field, and removed 10 percent of aseismic deformation. Combining with previous results, we analyzed the seismic hazard of study areas. The results show that there are some areas with large moment deficit in Chinese mainland. There are also large moment deficit areas, including regions around the Ordos Block, southeastern coast of China and the Bakal rift zone. Previous studies show that there may be some potential earthquakes in the near future in Darts of areas mentioned above. 展开更多
关键词 Contemporary deformation field Earthquake segmentation Moment deficit Seismic hazard
下载PDF
Comparative study on vertical deformation based on GPS and leveling data 被引量:1
2
作者 shanlan qin Wenping Wang Shangwu Song 《Geodesy and Geodynamics》 2018年第2期115-120,共6页
The development of GPS(Global Positioning System) technology has led to increasingly widely and successful applications of GPS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have ... The development of GPS(Global Positioning System) technology has led to increasingly widely and successful applications of GPS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical crustal movements with normal backgrounds. In this paper, we carried out a comparative study on the vertical deformation of the comprehensive profile of the cross-fault zone in Shanyin, Shanxi province, China, based on GPS and precise leveling observation data for multiple time periods. The vertical deformation rates observed with repeating GPS survey are obviously different(over 20 mm/y at some sites) from those with repeating leveling survey within a relatively short period. However, the deviations in the vertical displacement between GPS and leveling in a long-term survey(over three years) showed good consistency at 3-4 mm/y at most sites, on GPS forced offset surveying and fixed survey instruments in a long-term survey(over three years). Therefore, GPS vertical displacement results can be applied to the study of vertical crustal movements. 展开更多
关键词 Vertical deformation GPS Precise leveling DEVIATIONS
下载PDF
Dynamic evolution of crustal horizontal deformation before the Ms6.4 Menyuan earthquake
3
作者 Duxin Cui shanlan qin Wenping Wang 《Geodesy and Geodynamics》 2016年第4期253-260,共8页
An Ms6.4 earthquake occurred in the Menyuan county of Qinghai Province on Jan 21, 2016. In order to recognize the development of horizontal deformation and distinguish precursory deformation anomalies, we obtained coo... An Ms6.4 earthquake occurred in the Menyuan county of Qinghai Province on Jan 21, 2016. In order to recognize the development of horizontal deformation and distinguish precursory deformation anomalies, we obtained coordinates time series, velocity and strain model around the seismic zones from processing of continuous observations from 2010 and 6 times of surveying Global Positioning System (GPS) data since 2009. The results show that, before the earthquake, the eastern segmentation of the Qilian tectonic zone where the Lenglongling Fault located is in strong crustal shortening and compressional strain state with dilatational rates of -15 to -25 ppb. The Lenglongling Fault has a strike-slip rate of 3.1 mm/a and a far-field differential orthogonal rate of 7 mm/a, while differential rate is only 1.2 mm/a near the fault, which reflects its locking feature with strain energy accumulation and high seismic risks. Dynamic evolution of deformation model shows that preevent dilatational rates around the seismic zones increases from 15 ppb/a to -20 ppb/a with its center moving to the source areas. Time series of N components of G337 station, which is 13.7 km away from the Lenglongling Fault, exhibit a 5 mm/a acceleration anomaly. Time series of base-station QHME (in Menyuan) displays a reverse acceleration from the end of Sep. to Dec., 2016 when it comes to a largest deviation, and the accumulative displacement is more than 4 mm and the value reverse till the earthquake. In our results, coseismic displacement of N, E, U components in QHME site are 3.0 mm, 3.0 mm, -5.4 mm, respectively. If we profile these values onto the Lenglongling Fault, we can achieve a 1.1 mm of strike slip and 4.1 mm updip slip relative to the hanging wall. 展开更多
关键词 Ms6.4 Menyuan earthquake Global Positioning System (GPS) Crustal horizontal motion Earthquake anomaly Coseismic displacement Horizontal strain Slip rates of Lenglongling fault Hexi-Qilianshan area
下载PDF
The Present-Day Crustal 3D Movement and Geodynamic Mechanisms in Hainan Island
4
作者 Yaxuan Hu Jiuchang Hu +1 位作者 Bin Zhao shanlan qin 《Journal of Geoscience and Environment Protection》 2020年第5期231-243,共13页
The characteristics of the present-day crustal three dimensional (3D) movement with GNSS data during 1999-2018 and the precise leveling data during 1970s-2018 in Hainan Island and its adjacent area are analyzed. Based... The characteristics of the present-day crustal three dimensional (3D) movement with GNSS data during 1999-2018 and the precise leveling data during 1970s-2018 in Hainan Island and its adjacent area are analyzed. Based on the data and the horizontal movement field in the region of Southeast Asia, we discuss how the horizontal velocities in Hainan and the continental margin of the South China block (SCB) are affected by the Eurasian plate, the India-Australia plate and the Philippine Sea plate. The results show the movement of Hainan Island is the same as SCB. The horizontal velocities of the continental margin in South China are different in the east and the west along the boundary of the Northeastern Coast block and Yangtze Block. In Hainan Island, the 3D movement is different in two regions divided by Baisha fault. The movement of SCB is affected by Indo-European collision and extrusion. The movement of the continental margin is affected by both the Pacific Ocean plate, the Philippine Sea plate, the expansion of the South China Sea (SCS), the hot materials underplating and subsequent lithospheric extension. The effect on the regional movement by the Australia plate is smaller, but it can cause co-seismic step to SCB when there had a giant earthquake in Sumatra which is caused by the convergence of the Australia with the Sunda Plate in the NE direction. 展开更多
关键词 3D MOVEMENT GEODYNAMIC Mechanisms India-Australia PLATE Philippine Sea PLATE HAINAN ISLAND
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部