期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires 被引量:1
1
作者 shang xu Peifeng Li Yang Lu 《Nano Research》 SCIE EI CAS CSCD 2018年第2期625-632,共8页
Comprehensive understanding of the structural/morphology stability of ultrathin (diameter 〈 10 nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable imp... Comprehensive understanding of the structural/morphology stability of ultrathin (diameter 〈 10 nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable implementation of these emerging building blocks into functional nanoelectronics and mechatronics systems. Here, by using the in situ transmission electron microscopy (TEM) technique, we discovered that the Rayleigh instability phenomenon exists in ultrathin gold nanowires upon moderate heating. Through the controlled electron beam irradiation-induced heating mechanism (with 〈 100 ~C temperature rise), we further quantified the effect of electron beam intensity and its dependence on Rayleigh instability in altering the geometry and morphology of the ultrathin gold nanowires. Moreover, in situ high-resolution TEM (HRTEM) observations revealed surface atomic diffusion process to be the dominating mechanism for the morphology evolution processes. Our results, with unprecedented details on the atomic-scale picture of Rayleigh instability and its underlying physics, provide critical insights on the thermal/structural stability of gold nanostructures down to a sub-10 nm level which may pave the way for their interconnect applications in future ultra- large-scale integrated ciroaits. 展开更多
关键词 ultrathin gold nanowire in situ transmissionelectron microscopy (TEM) Rayleigh instability thermal instability INTERCONNECT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部