期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Study on the Wear Behaviour of Dual Phase Steels 被引量:3
1
作者 V.Abouei H.Saghafian +1 位作者 sh.kheirandish Kh.Ranjbar 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期107-110,共4页
Dual phase (DP) steels containing four different amounts of martensite ranging from 43 vol. pct to 81 vol. pct have been developed from 0.2 wt pct carbon steel by intercritical heat treatment at a fixed temperature ... Dual phase (DP) steels containing four different amounts of martensite ranging from 43 vol. pct to 81 vol. pct have been developed from 0.2 wt pct carbon steel by intercritical heat treatment at a fixed temperature of 780℃ with varying holding times followed by water quenching. Dry sliding wear tests have been conducted on DP steels using a pin- on-disk machine under different normal loads of 61.3, 68.5, 75.7 and 82.6 N and at a constant sliding speed of 1.20 m/s. At these loads, the mechanism of wear is primarily delamination, which has been confirmed by SEM micrographs of subsurface and wear debris of samples. Wear properties have been found to improve with the increase in martensite volume fraction in dual phase steels. 展开更多
关键词 WEAR Dual phase steel MICROSTRUCTURE
下载PDF
Experimental and numerical study on plasma nitriding of AISI P20 mold steel 被引量:2
2
作者 N.Nayebpashaee H.Vafaeenezhad +1 位作者 sh.kheirandish M.Soltanieh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第9期1065-1075,共11页
In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures(450℃, 500℃, and 550℃) and over a range of time periods(2.5, 5, 7.5, and 10 h), and ... In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures(450℃, 500℃, and 550℃) and over a range of time periods(2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ε-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel. 展开更多
关键词 tool steel plasma nitriding sputtering neural networks
下载PDF
Sliding Wear Behavior of a Grey Cast Iron Surface Remelted by TIG 被引量:1
3
作者 H.Mohamadzadeh H.Saghafian sh.kheirandish 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期622-628,共7页
The sliding wear behavior of a grey cast iron surface remelted by tungsten inert gas (TIG) was studied and compared with the unremelted one in the current work. To evaluate the wear behavior a Pin-on-Disk wear test ... The sliding wear behavior of a grey cast iron surface remelted by tungsten inert gas (TIG) was studied and compared with the unremelted one in the current work. To evaluate the wear behavior a Pin-on-Disk wear test machine was used. Pins which were prepared from the samples with the remelted layers of different thicknesses of 1.2, 1.8, 2.5 and 3 turn were worn on an AISID3 steel counterface having a hardness of 63HRC under the applied loads of 54, 76 and gg N at a constant sliding velocity of 0.45 m/s. Scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) techniques were used to characterize worn surface and subsurface and also wear debris obtained from the wear tests under different test conditions. Results showed that surface remelted grey cast iron have better wear properties for all applied normal loads in comparison with unremelted ones. Microscopic studies on the worn surfaces and subsurfaces of samples revealed that dominant wear mechanism for surface remelted samples was mild oxidative, while it was severe for unremelted samples. Increasing remelted layer thickness and then forming grosser microstructure lead to a decline of wear properties, whereas lower thickness of remelted layer with finer microstructure due to having higher cooling rate through remelting process can withstand better against wear. 展开更多
关键词 Grey cast Iron Surface remelted Tungsten inert gas (TIG) WEAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部