As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation systems.Electronic T...As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation systems.Electronic Toll Collection(ETC),which is one of the services included in ITS systems,is an automated system that allows vehicles to pass through toll plazas without stopping for manual payment.The ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system flow.To ensure secure and efficient toll payments,designing a distributed model for sharing toll payment information among untrusted toll service providers is necessary.However,the current ETC system operates under a centralized model.Additionally,both toll service providers and toll plazas know the toll usage history of vehicles.It raises concerns about revealing the entire driving routes and patterns of vehicles.To address these issues,blockchain technology,suitable for secure data management and data sharing in distributed systems,is being applied to the ETC system.Blockchain enables efficient and transparent management of ETC information.Nevertheless,the public nature of blockchain poses a challenge where users’usage records are exposed to all participants.To tackle this,we propose a blockchain-based toll ticket model named AnonymousTollPass that considers the privacy of vehicles.The proposed model utilizes traceable ring signatures to provide unlinkability between tickets used by a vehicle and prevent the identity of the vehicle using the ticket from being identified among the ring members for the ticket.Furthermore,malicious vehicles’identities can be traced when they attempt to reuse tickets.By conducting simulations,we show the effectiveness of the proposed model and demonstrate that gas fees required for executing the proposed smart contracts are only 10%(when the ring size is 50)of the fees required in previous studies.展开更多
With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Cont...With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.展开更多
In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high stre...In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1095591).
文摘As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation systems.Electronic Toll Collection(ETC),which is one of the services included in ITS systems,is an automated system that allows vehicles to pass through toll plazas without stopping for manual payment.The ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system flow.To ensure secure and efficient toll payments,designing a distributed model for sharing toll payment information among untrusted toll service providers is necessary.However,the current ETC system operates under a centralized model.Additionally,both toll service providers and toll plazas know the toll usage history of vehicles.It raises concerns about revealing the entire driving routes and patterns of vehicles.To address these issues,blockchain technology,suitable for secure data management and data sharing in distributed systems,is being applied to the ETC system.Blockchain enables efficient and transparent management of ETC information.Nevertheless,the public nature of blockchain poses a challenge where users’usage records are exposed to all participants.To tackle this,we propose a blockchain-based toll ticket model named AnonymousTollPass that considers the privacy of vehicles.The proposed model utilizes traceable ring signatures to provide unlinkability between tickets used by a vehicle and prevent the identity of the vehicle using the ticket from being identified among the ring members for the ticket.Furthermore,malicious vehicles’identities can be traced when they attempt to reuse tickets.By conducting simulations,we show the effectiveness of the proposed model and demonstrate that gas fees required for executing the proposed smart contracts are only 10%(when the ring size is 50)of the fees required in previous studies.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00225201,Development of Control Rights Protection Technology to Prevent Reverse Use of Military Unmanned Vehicles,50)by MSIT under the ITRC(Information Technology Research Center)Supported Program(IITP-2023-2018-0-01417,Industrial 5G Bigdata Based Deep Learning Models Development and Human Resource Cultivation,50)supervised by the IITP.
文摘With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.
文摘In construction industry, the application of high-performance reinforcement bar is required strongly. Unfortunately, not nearly enough research has been conducted on high-performance steel in comparison with high strength concrete. This paper describes the effect of high-performance steel as reinforcement steel bar on the tension response and cracking behavior of concrete and fiber-reinforced strain-hardening cement-based composite (SHCC) tension members. High-performance steel is characterized by higher strength in comparison to ASTM A615-06 Grade 60 steel. The tension stiffening effect on high-performance reinforcing bars embedded in cement-based composite prism is investigated experimentally. The variables in the study are types of cement-based composite (conventional concrete, synthetic fiber-reinforced cement composite), yielding strength of steel bars (400MPa and 600MPa), and types of loading (monotonic and repeated tension loading).