To characterize extended-spectrum beta-lactamase (ESBL) and extra-intestinal pathogenic Escherichia coli (ExPEC) associated virulence genes in E. coli isolates from chickens and humans in Trinidad and Tobago. This cro...To characterize extended-spectrum beta-lactamase (ESBL) and extra-intestinal pathogenic Escherichia coli (ExPEC) associated virulence genes in E. coli isolates from chickens and humans in Trinidad and Tobago. This cross sectional study was conducted over a three-month period. A total of 471 E. coli isolates;160 from humans treated at a regional tertiary hospital and 311 from chicken caecal samples from “pluck shops” in Trinidad & Tobago were identified using both conventional and molecular microbiological methods. Phenotypic confirmation of ESBL producing E. coli isolates from humans was by Microscan system (Siemens, USA) while the double disk diffusion method was used for the chicken isolates. Polymerase chain reaction (PCR) analysis was used to determine the ESBL and ExPEC-associated virulence genes in representative human isolates and all chicken isolates. From the 311 chicken E. coli isolates, 49.2% (153/311) produced ESBL, while 56.3% (90/160) from humans were ESBL positive. All human and chicken ESBL isolates were 100% susceptible to carbapenems and aminoglycosides antimicrobials. PCR detected 21.1% bla<sub>CTX-M</sub>, 13.3% bla<sub>TEM</sub> and 7.8% bla<sub>SHV</sub> genes among E coli isolates from humans compared to 0.6% bla<sub>CTX-M</sub> and 48.6% bla<sub>TEM</sub> genes in chickens. PCR analysis revealed diverse virulence profiles among the isolates. There was a high occurrence rate of ExPEC-asso- ciated virulence genes in E. coli isolates from both humans and chickens. However, the CTX-M-1 genes were most predominant in humans while TEM occurred in chic- ken isolates. The diverse ESBL and virulence associated gene profiles encountered in E. coli isolates from humans and chickens on the surface depicts no similarity or relationships despite occurrence in both cohort groups. Therefore E. coli strains from chickens and humans require further investigation to determine their clonal relatedness or transmission in the country.展开更多
文摘To characterize extended-spectrum beta-lactamase (ESBL) and extra-intestinal pathogenic Escherichia coli (ExPEC) associated virulence genes in E. coli isolates from chickens and humans in Trinidad and Tobago. This cross sectional study was conducted over a three-month period. A total of 471 E. coli isolates;160 from humans treated at a regional tertiary hospital and 311 from chicken caecal samples from “pluck shops” in Trinidad & Tobago were identified using both conventional and molecular microbiological methods. Phenotypic confirmation of ESBL producing E. coli isolates from humans was by Microscan system (Siemens, USA) while the double disk diffusion method was used for the chicken isolates. Polymerase chain reaction (PCR) analysis was used to determine the ESBL and ExPEC-associated virulence genes in representative human isolates and all chicken isolates. From the 311 chicken E. coli isolates, 49.2% (153/311) produced ESBL, while 56.3% (90/160) from humans were ESBL positive. All human and chicken ESBL isolates were 100% susceptible to carbapenems and aminoglycosides antimicrobials. PCR detected 21.1% bla<sub>CTX-M</sub>, 13.3% bla<sub>TEM</sub> and 7.8% bla<sub>SHV</sub> genes among E coli isolates from humans compared to 0.6% bla<sub>CTX-M</sub> and 48.6% bla<sub>TEM</sub> genes in chickens. PCR analysis revealed diverse virulence profiles among the isolates. There was a high occurrence rate of ExPEC-asso- ciated virulence genes in E. coli isolates from both humans and chickens. However, the CTX-M-1 genes were most predominant in humans while TEM occurred in chic- ken isolates. The diverse ESBL and virulence associated gene profiles encountered in E. coli isolates from humans and chickens on the surface depicts no similarity or relationships despite occurrence in both cohort groups. Therefore E. coli strains from chickens and humans require further investigation to determine their clonal relatedness or transmission in the country.