期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation of a Prototype 5G Network Integrating D2D Communication and MEC Technology
1
作者 Abdou Karim Farota Harouna Moussa Sanghotte +2 位作者 salick diagne Babacar Niang Bouya Diop 《Circuits and Systems》 2023年第7期29-38,共10页
In this paper, we study the coexistence of two key technologies in the same fifth-generation network, namely D2D (Device-to-Device) communication and MEC (Multi-Access Edge Computing) technology. These two promising t... In this paper, we study the coexistence of two key technologies in the same fifth-generation network, namely D2D (Device-to-Device) communication and MEC (Multi-Access Edge Computing) technology. These two promising technologies each have important roles to play in future telecommunications networks. D2D communication is a technology that aims to improve communication efficiency, increase overall throughput, and decrease latency. Multi-Access Edge Computing, a promising new concept, overcomes the burden of core cloud servers. This makes it possible to provide large storage, compute, and resource capacities to mobile edge nodes. With its closest deployment to users, it significantly reduces end-to-end transmission time. Our architecture consists of an access network and a central network, a base station (gNodeB), users, an MEC server and a gateway (UPF) to connect it to the RAN (Radio Access Network) of the core network. The base station controls communication by managing signaling and interference. The MEC server is placed next to the BS to provide data to the devices. It plays the role of the cloud that is located in the core network and allows you to store data and then do calculations for good communication between devices. Finally, we did a simulation using the OMNeT software. The results showed us that the data transmission passed well between the end devices, the antennas and the MEC server with very low latency and reliability. 展开更多
关键词 D2D MEC EDGE COMPUTING Basic Station OMNeT
下载PDF
Design of a Rectenna in 2.45 GHz Band Frequency for Energy Harvesting
2
作者 Ognadon Assogba Abdoul Karim Mbodji +1 位作者 salick diagne Abdou Karim Diallo 《Energy and Power Engineering》 2021年第9期333-342,共10页
There are several sources of energy recovery in the ambient environment. Th<span style="font-family:Verdana;">e radiofrequency energy harvesting system is used to harvest the electromagnetic energy in ... There are several sources of energy recovery in the ambient environment. Th<span style="font-family:Verdana;">e radiofrequency energy harvesting system is used to harvest the electromagnetic energy in the air by processing energy sources to charge low</span><span style="font-family:Verdana;">-power electronic devices. Rectenna termed</span><span style="font-family:Verdana;"> as </span><span style="font-family:Verdana;">a </span><span style="font-family:;" "=""><span style="font-family:Verdana;">rectif</span><span style="color:black;font-family:Verdana;">ying antenna is a device that is used to convert electromagnetic waves in the air into direct electric current. In this work, we have designed firstly the patch antenna with a small size printed on the FR4 substrate (40 mm × 47.5</span></span><span style="font-family:" color:black;"=""> </span><span style="font-family:Verdana;">mm × 1.6 mm) and then the rectifier circuit. This rectenna is capable of working at a frequency range of 2.45 GHz. The antenna was designed using High Frequency Structure Simulator (HFSS) 13.0 software with the result of working frequency of 2.453 GHz, S11 (Return Loss) </span><span style="font-family:;" "=""><span style="font-family:Verdana;">-</span><span style="color:black;font-family:Verdana;">52 dB, Voltage Standing Wave Ratio (VSWR) 1.036, gain 3.48 dB and bandwidth 150 MHz. The efficiency of rectifier design on Advanced Design System (ADS) 2011 software is 54% at the input power of 0 dBm at 2.45 GHz.</span><span style="color:black;font-family:Verdana;"> <span style="font-family:Verdana;">The resulting system is capable of producing electrical energy to power low-power electronic equipment at a DC voltage of 732 mV.</span></span></span> 展开更多
关键词 EFFICIENCY Energy Harvesting RADIOFREQUENCY RECTENNA
下载PDF
Solar Energy Recovery and Storage System for Powering Wireless Communicating Nodes
3
作者 salick diagne Abdou Karim Farota +2 位作者 Ognadon Assogba Bouya Diop Thierry Val 《Energy and Power Engineering》 2021年第12期377-391,共15页
We find nowadays in several fields of application the presence of IoT technology such as wireless sensor and actuator networks. In this technology, one of the main points of study is the management of energy consumpti... We find nowadays in several fields of application the presence of IoT technology such as wireless sensor and actuator networks. In this technology, one of the main points of study is the management of energy consumption. In this article, we provide a solar energy harvesting and storage system for powering wireless nodes. The system we propose uses a low power solar pane a P</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">&</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">O control adapted to fuzzy logic for the MPPT. For energy storage, we used the supercapacitor technology. The simulation of the models shows better results than using the P</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">&</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">O command for an autonomous power supply of the wireless communicating nodes in the study region. 展开更多
关键词 Solar Energy Energy Recovery SUPERCAPACITOR Fuzzy Logic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部