At very high energies, pair production formation (γ + N → e<sup>+</sup>e<sup>-</sup>) exhibits a variety of intriguing properties. Analytically and quantitatively, the formation of Electron-P...At very high energies, pair production formation (γ + N → e<sup>+</sup>e<sup>-</sup>) exhibits a variety of intriguing properties. Analytically and quantitatively, the formation of Electron-Positron pairs in the Electro-Magnetic field of light nuclei has been calculated. In Ultra-Relativistic (UR) areas of incident photon energy, applying the resulting formulas to the energy distribution of the (e<sup>-</sup>, e<sup>+</sup>) operation. When we compare the results, we can observe that the Magnetic field of the target nucleus is more efficacious than the Electric field of the nucleus in the (e<sup>-</sup>, e<sup>+</sup>) operation. Furthermore, we can show that in Pair Production operation, the Differential Cross Section (DCS) owing to the target nucleus’s Electric Quadrupole (EQ) and Magnetic Octupole (MO) are bigger than the Differential Cross Section (DCS) attributable to the target nucleus’s Electric Charge (EC) distribution and Magnetic Dipole (MD).展开更多
Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that def...Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that define the gravitational model and to reduce the order of the field equations. The consequences of matter, described by the energy-momentum tensor, are investigated in the case of a perfect fluid. Some physical features and kinematical properties of the obtained model are studied.展开更多
文摘At very high energies, pair production formation (γ + N → e<sup>+</sup>e<sup>-</sup>) exhibits a variety of intriguing properties. Analytically and quantitatively, the formation of Electron-Positron pairs in the Electro-Magnetic field of light nuclei has been calculated. In Ultra-Relativistic (UR) areas of incident photon energy, applying the resulting formulas to the energy distribution of the (e<sup>-</sup>, e<sup>+</sup>) operation. When we compare the results, we can observe that the Magnetic field of the target nucleus is more efficacious than the Electric field of the nucleus in the (e<sup>-</sup>, e<sup>+</sup>) operation. Furthermore, we can show that in Pair Production operation, the Differential Cross Section (DCS) owing to the target nucleus’s Electric Quadrupole (EQ) and Magnetic Octupole (MO) are bigger than the Differential Cross Section (DCS) attributable to the target nucleus’s Electric Charge (EC) distribution and Magnetic Dipole (MD).
文摘Exact self-similar solutions to Einstein’s field equations for the Kantowski-Sachs space-time are determined. The self-similarity property is applied to determine the functional form of the unknown functions that define the gravitational model and to reduce the order of the field equations. The consequences of matter, described by the energy-momentum tensor, are investigated in the case of a perfect fluid. Some physical features and kinematical properties of the obtained model are studied.