Planck’s radiation law provides an equation for the intensity of the electromagnetic radiation from a physical body as a function of frequency and temperature. The frequency that corresponds to the maximum intensity ...Planck’s radiation law provides an equation for the intensity of the electromagnetic radiation from a physical body as a function of frequency and temperature. The frequency that corresponds to the maximum intensity is a function of temperature. At a specific temperature, for the frequencies correspond to much less than the maximum intensity, an equation was derived in the form of the Lambert <em>W</em> function. Numerical calculations validate the equation. A new form of solution for the Euler’s transcendental equation was derived in the form of the Lambert <em>W</em> function with logarithmic argument. Numerical solutions to the Euler’s equation were determined iteratively and iterative convergences were investigated. Numerical coincidences with physical constants were explored.展开更多
文摘Planck’s radiation law provides an equation for the intensity of the electromagnetic radiation from a physical body as a function of frequency and temperature. The frequency that corresponds to the maximum intensity is a function of temperature. At a specific temperature, for the frequencies correspond to much less than the maximum intensity, an equation was derived in the form of the Lambert <em>W</em> function. Numerical calculations validate the equation. A new form of solution for the Euler’s transcendental equation was derived in the form of the Lambert <em>W</em> function with logarithmic argument. Numerical solutions to the Euler’s equation were determined iteratively and iterative convergences were investigated. Numerical coincidences with physical constants were explored.