目的在点云场景中,语义分割对场景理解来说是至关重要的视觉任务。由于图像是结构化的,而点云是非结构化的,点云上的卷积通常比图像上的卷积更加困难,会消耗更多的计算和内存资源。在这种情况下,大尺度场景的分割往往需要分块进行,导致...目的在点云场景中,语义分割对场景理解来说是至关重要的视觉任务。由于图像是结构化的,而点云是非结构化的,点云上的卷积通常比图像上的卷积更加困难,会消耗更多的计算和内存资源。在这种情况下,大尺度场景的分割往往需要分块进行,导致效率不足并且无法捕捉足够的场景信息。为了解决这个问题,本文设计了一种计算高效且内存高效的网络结构,可以用于端到端的大尺度场景语义分割。方法结合空间深度卷积和残差结构设计空间深度残差(spatial depthwise residual,SDR)块,其具有高效的计算效率和内存效率,并且可以有效地从点云中学习到几何特征。另外,设计一种扩张特征整合(dilated feature aggregation,DFA)模块,可以有效地增加感受野而仅增加少量的计算量。结合SDR块和DFA模块,本文构建SDRNet(spatial depthwise residual network),这是一种encoder-decoder深度网络结构,可以用于大尺度点云场景语义分割。同时,针对空间卷积核输入数据的分布不利于训练问题,提出层级标准化来减小参数学习的难度。特别地,针对稀疏雷达点云的旋转不变性,提出一种特殊的SDR块,可以消除雷达数据绕Z轴旋转的影响,显著提高网络处理激光雷达点云时的性能。结果在S3DIS(stanford large-scale 3D indoor space)和Semantic KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上对提出的方法进行测试,并分析点数与帧率的关系。本文方法在S3DIS数据集上的平均交并比(mean intersection over union,mIoU)为71.7%,在Semantic KITTI上的m Io U在线单次扫描评估中达到59.1%。结论实验结果表明,本文提出的SDRNet能够直接在大尺度场景下进行语义分割。在S3DIS和Semantic KITTI数据集上的实验结果证明本文方法在精度上有较好表现。通过分析点数量与帧率之间的关系,得到的数据表明本文提出的SDRNet能保持较高精度和较�展开更多
【目的】基于协方差估计的多因变量回归(multivariate regression with covariance estimation,MRCE)模型进行多性状QTL定位分析,为动植物数量性状基因定位提供理论参考。【方法】构建适用QTL定位的MRCE模型,设计3个模拟试验对模型进行...【目的】基于协方差估计的多因变量回归(multivariate regression with covariance estimation,MRCE)模型进行多性状QTL定位分析,为动植物数量性状基因定位提供理论参考。【方法】构建适用QTL定位的MRCE模型,设计3个模拟试验对模型进行检验,通过计算机生成基因型和2个相关性状的表型值,并用2组数据对模型进行实际应用,其中一组为水稻DH群体数据,选自qtlnetwork软件;另一组为水稻永久F群体数据,由珍汕97×明恢63,含有210个株系的重组自交系(RIL)群体随机交配生成,分析MRCE模型在以上2组数据多性状QTL定位中的应用效果。【结果】用MRCE模型进行QTL定位的模拟试验结果表明,遗传变异所占方差比越大,相关系数绝对值越大,遗传率越大,则功效越好,估计值越接近效应值。MRCE的QTL定位应用结果显示,从水稻DH群体中识别出8个QTL与ph6性状有关,6个QTL与ph8性状有关;从1998年水稻永久F群体数据中识别出3个QTL与穗粒数相关,10个QTL与粒质量相关;从1999年数据识别出3个QTL与穗粒数相关,6个QTL与粒质量相关。【结论】利用MRCE模型进行多性状QTL定位是可行的。展开更多
文摘目的在点云场景中,语义分割对场景理解来说是至关重要的视觉任务。由于图像是结构化的,而点云是非结构化的,点云上的卷积通常比图像上的卷积更加困难,会消耗更多的计算和内存资源。在这种情况下,大尺度场景的分割往往需要分块进行,导致效率不足并且无法捕捉足够的场景信息。为了解决这个问题,本文设计了一种计算高效且内存高效的网络结构,可以用于端到端的大尺度场景语义分割。方法结合空间深度卷积和残差结构设计空间深度残差(spatial depthwise residual,SDR)块,其具有高效的计算效率和内存效率,并且可以有效地从点云中学习到几何特征。另外,设计一种扩张特征整合(dilated feature aggregation,DFA)模块,可以有效地增加感受野而仅增加少量的计算量。结合SDR块和DFA模块,本文构建SDRNet(spatial depthwise residual network),这是一种encoder-decoder深度网络结构,可以用于大尺度点云场景语义分割。同时,针对空间卷积核输入数据的分布不利于训练问题,提出层级标准化来减小参数学习的难度。特别地,针对稀疏雷达点云的旋转不变性,提出一种特殊的SDR块,可以消除雷达数据绕Z轴旋转的影响,显著提高网络处理激光雷达点云时的性能。结果在S3DIS(stanford large-scale 3D indoor space)和Semantic KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上对提出的方法进行测试,并分析点数与帧率的关系。本文方法在S3DIS数据集上的平均交并比(mean intersection over union,mIoU)为71.7%,在Semantic KITTI上的m Io U在线单次扫描评估中达到59.1%。结论实验结果表明,本文提出的SDRNet能够直接在大尺度场景下进行语义分割。在S3DIS和Semantic KITTI数据集上的实验结果证明本文方法在精度上有较好表现。通过分析点数量与帧率之间的关系,得到的数据表明本文提出的SDRNet能保持较高精度和较�
文摘【目的】基于协方差估计的多因变量回归(multivariate regression with covariance estimation,MRCE)模型进行多性状QTL定位分析,为动植物数量性状基因定位提供理论参考。【方法】构建适用QTL定位的MRCE模型,设计3个模拟试验对模型进行检验,通过计算机生成基因型和2个相关性状的表型值,并用2组数据对模型进行实际应用,其中一组为水稻DH群体数据,选自qtlnetwork软件;另一组为水稻永久F群体数据,由珍汕97×明恢63,含有210个株系的重组自交系(RIL)群体随机交配生成,分析MRCE模型在以上2组数据多性状QTL定位中的应用效果。【结果】用MRCE模型进行QTL定位的模拟试验结果表明,遗传变异所占方差比越大,相关系数绝对值越大,遗传率越大,则功效越好,估计值越接近效应值。MRCE的QTL定位应用结果显示,从水稻DH群体中识别出8个QTL与ph6性状有关,6个QTL与ph8性状有关;从1998年水稻永久F群体数据中识别出3个QTL与穗粒数相关,10个QTL与粒质量相关;从1999年数据识别出3个QTL与穗粒数相关,6个QTL与粒质量相关。【结论】利用MRCE模型进行多性状QTL定位是可行的。