A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substra...A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.展开更多
A general method to realize arbitrary dual-band independent phase control is proposed and demonstrated in this paper.A double-layered C-shape reflective meta-atom is designed to realize independent phase control with ...A general method to realize arbitrary dual-band independent phase control is proposed and demonstrated in this paper.A double-layered C-shape reflective meta-atom is designed to realize independent phase control with high efficiency.As a proof of concept,we propose two functional metasurfaces in the microwave region;the first metasurface performs beam steering in different directions,and the second metasurface generates achromatic beam steering at two distinct frequencies.Both simulation and measurement results agree well with the theoretical pre-setting.The maximum measured efficiency is 88.7%and 92.3%at 6.8 GHz and 8.0 GHz,respectively,for one metasurface,and 91.0%and 89.8%at 6.9 GHz and8.6 GHz,respectively,for the other.展开更多
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(No.LH2022F053)the National Natural Science Foundation of China(Nos.62275063 and 62171153)+3 种基金the Scientific and Technological Development Project of the Central Government Guiding Local(No.SBZY2021E076)the Open Project of State Key Laboratory of Millimeter Waves(No.K202309)the Postdoctoral Research Fund Project of Heilongjiang Province of China(No.LBH-Q21195)the Fundamental Research Funds of Heilongjiang Provincial Universities of China(No.145209151).
文摘A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.
基金the support from National Natural Science Foundation of China(No.61771172)Open Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal ProcessingNatural Science Foundation of Heilongjiang Province(No.YQ2020F002)。
文摘A general method to realize arbitrary dual-band independent phase control is proposed and demonstrated in this paper.A double-layered C-shape reflective meta-atom is designed to realize independent phase control with high efficiency.As a proof of concept,we propose two functional metasurfaces in the microwave region;the first metasurface performs beam steering in different directions,and the second metasurface generates achromatic beam steering at two distinct frequencies.Both simulation and measurement results agree well with the theoretical pre-setting.The maximum measured efficiency is 88.7%and 92.3%at 6.8 GHz and 8.0 GHz,respectively,for one metasurface,and 91.0%and 89.8%at 6.9 GHz and8.6 GHz,respectively,for the other.