It was presented the in situ observation of growth behavior and morphology of delta-ferrite as a function of solidification rate in an AISI304 stainless steel. The specimens have been solidified and observed using con...It was presented the in situ observation of growth behavior and morphology of delta-ferrite as a function of solidification rate in an AISI304 stainless steel. The specimens have been solidified and observed using confocal scanning laser microscopy (CSLM). The δ-phase always appears like cells on the sample surface when critical supercooling occurs, during which the L→δ transformation starts. The solid-liquid (S-L) interface is found to be finger shaped and has no faceted shape. γ phase appears among δ grains due to partitioning of Ni into the melt during solidification, when solidification rate is higher. The mergence of observed δ cells is possible for the steel sample cooled at 7.5℃/min. The formation of dendrites can be observed on the free surface of the steel sample cooled at 150℃/min. The size of solidified delta grains decreases from 120 to 20-80μm, and the volume fraction of solidified austenite increases with increase in solidification rate from 7.5 to 150℃/min. The relation between the tip radius of δ cell and its growth rate is deduced, and the results agree with the experimental values.展开更多
In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar ...In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.展开更多
The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ri...The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ring in Lanzhou.The new mass excess value allowed us to determine the excitation energies of the two low-lying 1+states in ^(22)Al with significantly reduced uncertainties of 51 keV.When compared to the analogue states in its mirror nucleus ^(22)F,the mirror energy differences of the two 1^(+)states in the ^(22)Al-^(22)F mirror pair are determined to be−625(51)keV and−330(51)keV.The excitation energies and mirror energy differences are used to test the state-of-the-art ab initio valence-space in-medium similarity renormalization group calculations with four sets of interactions derived from the chiral effective field theory.The mechanism leading to the large mirror energy differences is investigated and attributed to the occupation of theπs_(1/2) orbital.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of ...It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively,and it is more effective to reduce residual stress to peen the weld than to peen the weld toe.It is a effective result that other technology and method used in welding can never achieved.展开更多
Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recentl...Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recently been discovered.It is therefore of interest to know whether nonlinear light branching can also occur.Here,using particle-in-cell simulations,we find that in the case of an intense laser propagating through a randomly uneven medium,cascading local photoionization by the incident laser,together with the response of freed electrons in the strong laser fields,triggers space–time-dependent optical unevenness.The resulting branching pattern depends dramatically on the laser intensity.That is,the branching here is distinct from the existing linear ones.The observed branching properties agree well with theoretical analyses based on the Helmholtz equation.Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.展开更多
A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable-charge impurities is given.Relevant physical processes such as dust elastic relaxation and dust char...A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable-charge impurities is given.Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account.It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.展开更多
Molecular dynamics(MD)has served as a powerful tool for designing materials with reduced reliance on laboratory testing.However,the use of MD directly to treat the deformation and failure of materials at the mesoscale...Molecular dynamics(MD)has served as a powerful tool for designing materials with reduced reliance on laboratory testing.However,the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach.In this work,we propose a learning framework to extract a peridynamics model as a mesoscale continuum surrogate from MD simulated material fracture data sets.Firstly,we develop a novel coarse-graining method,to automatically handle the material fracture and its corresponding discontinuities in the MD displacement data sets.Inspired by the weighted essentially non-oscillatory(WENO)scheme,the key idea lies at an adaptive procedure to automatically choose the locally smoothest stencil,then reconstruct the coarse-grained material displacement field as the piecewise smooth solutions containing discontinuities.Then,based on the coarse-grained MD data,a two-phase optimizationbased learning approach is proposed to infer the optimal peridynamics model with damage criterion.In the first phase,we identify the optimal nonlocal kernel function from the data sets without material damage to capture the material stiffness properties.Then,in the second phase,the material damage criterion is learnt as a smoothed step function from the data with fractures.As a result,a peridynamics surrogate is obtained.As a continuum model,our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training,and hence allows for substantial reductions in computational cost compared with MD.We illustrate the efficacy of the proposed approach with several numerical tests for the dynamic crack propagation problem in a single-layer graphene.Our tests show that the proposed data-driven model is robust and generalizable,in the sense that it is capable of modeling the initialization and growth of fractures under discretization and loading settings that are different from the ones used during training.展开更多
In this study,we propose a method for estimating the amount of expansion that occurs in subsea pipelines,which could be applied in the design of robust structures that transport oil and gas from offshore wells.We begi...In this study,we propose a method for estimating the amount of expansion that occurs in subsea pipelines,which could be applied in the design of robust structures that transport oil and gas from offshore wells.We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines.Due to the effects of high pressure and high temperature,the production of fluid from offshore wells is typically caused by physical deformation of subsea structures,e.g.,expansion and contraction during the transportation process.In severe cases,vertical and lateral buckling occurs,which causes a significant negative impact on structural safety,and which is related to on-bottom stability,free-span,structural collapse,and many other factors.In addition,these factors may affect the production rate with respect to flow assurance,wax,and hydration,to name a few.In this study,we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage,which can lead to savings in both cost and computation time.As such,in this paper,we propose an applicable diagram,which we call the standard dimensionless ratio(SDR)versus virtual anchor length(LA)diagram,that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios.With this user guideline,offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation,design,and maintenance of the subsea pipeline.展开更多
A small-scale silica gel-water adsorption system with modular adsorber,which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect,is proposed and investigated in this...A small-scale silica gel-water adsorption system with modular adsorber,which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect,is proposed and investigated in this paper.A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance.First,the adsorption system is tested under different modes(different mass recovery,heat recovery,and cogeneration time)to determine the optimal operating conditions.Then,the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures.The results show that the optimal time for cogeneration,mass recovery,and heat recovery are 600 s,40 s,and 40 s,respectively.When the inlet temperature of hot water is around 85℃,the largest cooling power and heating power are 8.25 kW and 21.94 kW,respectively.Under the condition of cooling water temperature of 35℃,the obtained maximum COP,COP,and SCP of the system are 0.59,1.39,and 184.5 W/kg,respectively.展开更多
The growing market of WPAN has led to an increasingdemand of security measures and devices forprotecting the user data transmitted over the openchannels.Advanced Encryption Standards(AES)isthe basic security approach ...The growing market of WPAN has led to an increasingdemand of security measures and devices forprotecting the user data transmitted over the openchannels.Advanced Encryption Standards(AES)isthe basic security approach for WPAN.To meet thelow cost,low power feature and high security demandof WPAN,a low cost,high efficient AES coreis proposed in this paper.To achieve low cost,methods of integration and resource sharing are usedin designing a very low-complexity architecture,especially in(inverse)byte substitution(inv)SubBytes)modules and(inverse)mix column(inv)MixColumn)modules,etc.Further more,AESEncryptor and Decryptor is integrated into a fullfunctional crypto-engine.This very low-cost andhigh efficiency AES core of IEEE 802.15.4-2006 isdesigned and emulated on Xilinx FPGA.Simulationresults show that this kind of design can be used inresource critical applications,such as smart card,PDA and mobile phones.展开更多
The results of comprehensive microscopic optical model calculations are pres-ented for the K<sup>+</sup> scattering from <sup>6</sup>Li,<sup>12</sup>C,<sup>28</sup>Si an...The results of comprehensive microscopic optical model calculations are pres-ented for the K<sup>+</sup> scattering from <sup>6</sup>Li,<sup>12</sup>C,<sup>28</sup>Si and <sup>40</sup>Ca at incident momenta 400-800MeV/c.The unconventional medium effect (i.e.the density-dependent correction forthe K<sup>+</sup>-nucleon scattering amplitude) is considered in two approaches.Both results arein agreement with recent experimental data.The influence of the correction on K<sup>+</sup> scat-tering from different nuclei are discussed in detail and only a weak dependence of thein-medium nucleon“swelling”effects on the mass number of target nuclei is found ex-cept for very light loosely-bound nucleus.展开更多
Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as th...Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as the diffusion sources.The preliminary results show that the coercivity was successfully enhanced from 1000 kA/m to 1695,1156 and 1125 kA/m by Pr70Al20Cu10,La70Al20Cu10 and Al75Cu25(at.%) alloys diffusion,respectively,due to the formation of(Nd,Pr)-Fe-B,La2 O3 and c-Nd2 O3 phases respectively,after diffusion.It is also found that the corrosion resistance can be improved by Al-Cu diffusion due to the positive effects of Al and Cu elements in grain boundary.The present results demonstrated the various coercivity enhancement mechanisms for the GBDP based on different diffusion sources,and provided feasible solutions for cost reduction of GBDP and NdFeB production by saving RE resource.展开更多
The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scal...The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scale precipitates, were presented for preparing Al wire with high strength and high electrical conductivity based on the specially designed experiments for breaking the mutually exclusive relation between the strength and the electrical conductivity. The results show that the elongated grains could lead to a higher electrical conductivity in Al wire without sacrificing the strength;while, the <111> sharp texture can efficiently strengthen the Al wire without influencing the electrical conductivity. Furthermore, nano-scale precipitates with proper size can simultaneously improve the strength and electrical conductivity of Al alloy wire. Under the guidance of the above three key principles, Al wires with high strength and high conductivity were prepared.展开更多
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p...The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
基金This work was supported by the China Postdoctoral Science Foundation (No. 20060390150).
文摘It was presented the in situ observation of growth behavior and morphology of delta-ferrite as a function of solidification rate in an AISI304 stainless steel. The specimens have been solidified and observed using confocal scanning laser microscopy (CSLM). The δ-phase always appears like cells on the sample surface when critical supercooling occurs, during which the L→δ transformation starts. The solid-liquid (S-L) interface is found to be finger shaped and has no faceted shape. γ phase appears among δ grains due to partitioning of Ni into the melt during solidification, when solidification rate is higher. The mergence of observed δ cells is possible for the steel sample cooled at 7.5℃/min. The formation of dendrites can be observed on the free surface of the steel sample cooled at 150℃/min. The size of solidified delta grains decreases from 120 to 20-80μm, and the volume fraction of solidified austenite increases with increase in solidification rate from 7.5 to 150℃/min. The relation between the tip radius of δ cell and its growth rate is deduced, and the results agree with the experimental values.
文摘In 2018,the STAR collaboration collected data from^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr at√^(S)NN=200 Ge V to search for the presence of the chiral magnetic effect in collisions of nuclei.The isobar collision species alternated frequently between 9644 Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zr.In order to conduct blind analyses of studies related to the chiral magnetic effect in these isobar data,STAR developed a three-step blind analysis procedure.Analysts are initially provided a"reference sample"of data,comprised of a mix of events from the two species,the order of which respects time-dependent changes in run conditions.After tuning analysis codes and performing time-dependent quality assurance on the reference sample,analysts are provided a species-blind sample suitable for calculating efficiencies and corrections for individual≈30-min data-taking runs.For this sample,species-specific information is disguised,but individual output files contain data from a single isobar species.Only run-by-run corrections and code alteration subsequent to these corrections are allowed at this stage.Following these modifications,the"frozen"code is passed over the fully un-blind data,completing the blind analysis.As a check of the feasibility of the blind analysis procedure,analysts completed a"mock data challenge,"analyzing data from Au+Au collisions at√^(S)NN=27 Ge V,collected in 2018.The Au+Au data were prepared in the same manner intended for the isobar blind data.The details of the blind analysis procedure and results from the mock data challenge are presented.
基金Supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB34000000)the CAS Project for Young Scientists in Basic Research (YSBR-002)+4 种基金the National Nature Science Foundation of China (12135017,12121005,11975280,12105333,12205340,12322507,12305126,12305151)the Gansu Natural Science Foundation (22JR5RA123,23JRRA614)the National Key R&D Program of China (2021YFA1601500)Support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021419,2022423)support from Young Scholar of Regional Development,CAS ([2023]15).
文摘The ground-state mass excess of the T_(z)=−2 drip-line nucleus ^(22)Al is measured for the first time as 18103(10)keV using the newly-developed Bρ-defined isochronous mass spectrometry method at the cooler storage ring in Lanzhou.The new mass excess value allowed us to determine the excitation energies of the two low-lying 1+states in ^(22)Al with significantly reduced uncertainties of 51 keV.When compared to the analogue states in its mirror nucleus ^(22)F,the mirror energy differences of the two 1^(+)states in the ^(22)Al-^(22)F mirror pair are determined to be−625(51)keV and−330(51)keV.The excitation energies and mirror energy differences are used to test the state-of-the-art ab initio valence-space in-medium similarity renormalization group calculations with four sets of interactions derived from the chiral effective field theory.The mechanism leading to the large mirror energy differences is investigated and attributed to the occupation of theπs_(1/2) orbital.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
文摘It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy.Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively,and it is more effective to reduce residual stress to peen the weld than to peen the weld toe.It is a effective result that other technology and method used in welding can never achieved.
基金supported by the National Natural Science Foundation of China(Grant Nos.12205201,12175154,11875092,and 12005149)the Natural Science Foundation of Top Talent of SZTU(Grant Nos.2019010801001 and 2019020801001)+1 种基金GCS Jülich(Project No.QED20)in GermanyThe EPOCH code is used under a UK EPSRC contract(Grant Nos.EP/G055165/1 and EP/G056803/1).
文摘Branched flow is an interesting phenomenon that can occur in diverse systems.It is usually linear in the sense that the flow does not alter the properties of the medium.Branched flow of light on thin films has recently been discovered.It is therefore of interest to know whether nonlinear light branching can also occur.Here,using particle-in-cell simulations,we find that in the case of an intense laser propagating through a randomly uneven medium,cascading local photoionization by the incident laser,together with the response of freed electrons in the strong laser fields,triggers space–time-dependent optical unevenness.The resulting branching pattern depends dramatically on the laser intensity.That is,the branching here is distinct from the existing linear ones.The observed branching properties agree well with theoretical analyses based on the Helmholtz equation.Nonlinear branched propagation of intense lasers potentially opens up a new area for laser–matter interaction and may be relevant to other branching phenomena of a nonlinear nature.
基金Supported by the National Natural Science Foundation of China under Grant Nos.19905001 and 19975006partially by the Research Fund for the Doctoral Program of Higher Education of Chinathe Sonderforschungsbereich 191 Niedertemperatur Plasmen(Germany)。
文摘A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable-charge impurities is given.Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account.It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.
基金the projects support by the National Science Foundation(No.DMS-1753031)the Air Force Office of Scientific Research(No.FA9550-22-1-0197)+3 种基金partially supported by the National Science Foundation(No.2019035)the support of the Sandia National Laboratories(SNL)Laboratory-directed Research and Development Programthe U.S.Department of Energy(DOE)Office of Advanced Scientific Computing Research(ASCR)under the Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems(PhILMs)project。
文摘Molecular dynamics(MD)has served as a powerful tool for designing materials with reduced reliance on laboratory testing.However,the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach.In this work,we propose a learning framework to extract a peridynamics model as a mesoscale continuum surrogate from MD simulated material fracture data sets.Firstly,we develop a novel coarse-graining method,to automatically handle the material fracture and its corresponding discontinuities in the MD displacement data sets.Inspired by the weighted essentially non-oscillatory(WENO)scheme,the key idea lies at an adaptive procedure to automatically choose the locally smoothest stencil,then reconstruct the coarse-grained material displacement field as the piecewise smooth solutions containing discontinuities.Then,based on the coarse-grained MD data,a two-phase optimizationbased learning approach is proposed to infer the optimal peridynamics model with damage criterion.In the first phase,we identify the optimal nonlocal kernel function from the data sets without material damage to capture the material stiffness properties.Then,in the second phase,the material damage criterion is learnt as a smoothed step function from the data with fractures.As a result,a peridynamics surrogate is obtained.As a continuum model,our peridynamics surrogate model can be employed in further prediction tasks with different grid resolutions from training,and hence allows for substantial reductions in computational cost compared with MD.We illustrate the efficacy of the proposed approach with several numerical tests for the dynamic crack propagation problem in a single-layer graphene.Our tests show that the proposed data-driven model is robust and generalizable,in the sense that it is capable of modeling the initialization and growth of fractures under discretization and loading settings that are different from the ones used during training.
基金Supported by the Technology Innovation Program(Grant No.:10053121 and 10051279) funded by the Ministry of Trade,Industry&Energy(MI,Korea)
文摘In this study,we propose a method for estimating the amount of expansion that occurs in subsea pipelines,which could be applied in the design of robust structures that transport oil and gas from offshore wells.We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines.Due to the effects of high pressure and high temperature,the production of fluid from offshore wells is typically caused by physical deformation of subsea structures,e.g.,expansion and contraction during the transportation process.In severe cases,vertical and lateral buckling occurs,which causes a significant negative impact on structural safety,and which is related to on-bottom stability,free-span,structural collapse,and many other factors.In addition,these factors may affect the production rate with respect to flow assurance,wax,and hydration,to name a few.In this study,we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage,which can lead to savings in both cost and computation time.As such,in this paper,we propose an applicable diagram,which we call the standard dimensionless ratio(SDR)versus virtual anchor length(LA)diagram,that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios.With this user guideline,offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation,design,and maintenance of the subsea pipeline.
基金supported by the Key Project of the National Natural Science Foundation of China for international academic exchanges(Grant No.51561145012)the National Natural Science Foundation of China(Grant No.51576120).
文摘A small-scale silica gel-water adsorption system with modular adsorber,which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect,is proposed and investigated in this paper.A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance.First,the adsorption system is tested under different modes(different mass recovery,heat recovery,and cogeneration time)to determine the optimal operating conditions.Then,the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures.The results show that the optimal time for cogeneration,mass recovery,and heat recovery are 600 s,40 s,and 40 s,respectively.When the inlet temperature of hot water is around 85℃,the largest cooling power and heating power are 8.25 kW and 21.94 kW,respectively.Under the condition of cooling water temperature of 35℃,the obtained maximum COP,COP,and SCP of the system are 0.59,1.39,and 184.5 W/kg,respectively.
文摘The growing market of WPAN has led to an increasingdemand of security measures and devices forprotecting the user data transmitted over the openchannels.Advanced Encryption Standards(AES)isthe basic security approach for WPAN.To meet thelow cost,low power feature and high security demandof WPAN,a low cost,high efficient AES coreis proposed in this paper.To achieve low cost,methods of integration and resource sharing are usedin designing a very low-complexity architecture,especially in(inverse)byte substitution(inv)SubBytes)modules and(inverse)mix column(inv)MixColumn)modules,etc.Further more,AESEncryptor and Decryptor is integrated into a fullfunctional crypto-engine.This very low-cost andhigh efficiency AES core of IEEE 802.15.4-2006 isdesigned and emulated on Xilinx FPGA.Simulationresults show that this kind of design can be used inresource critical applications,such as smart card,PDA and mobile phones.
基金The project supportcd in part by the National Natural Science Foundation of China
文摘The results of comprehensive microscopic optical model calculations are pres-ented for the K<sup>+</sup> scattering from <sup>6</sup>Li,<sup>12</sup>C,<sup>28</sup>Si and <sup>40</sup>Ca at incident momenta 400-800MeV/c.The unconventional medium effect (i.e.the density-dependent correction forthe K<sup>+</sup>-nucleon scattering amplitude) is considered in two approaches.Both results arein agreement with recent experimental data.The influence of the correction on K<sup>+</sup> scat-tering from different nuclei are discussed in detail and only a weak dependence of thein-medium nucleon“swelling”effects on the mass number of target nuclei is found ex-cept for very light loosely-bound nucleus.
基金supported financially by the National Natural Science Foundation of China(No.51774146)the Guangzhou Municipal Science and Technology Program(Nos.201605120111410 and 201804020032)the Guangdong Key Laboratory of Rare Earth Development and Applications(No.XTKY-201801)。
文摘Aiming at improving the performance/cost ratio in grain boundary diffusion process(GBDP),the critical RE containing Pr-Al-Cu alloy,less expensive RE containing La-Al-Cu alloy and non-RE Al-Cu alloy were employed as the diffusion sources.The preliminary results show that the coercivity was successfully enhanced from 1000 kA/m to 1695,1156 and 1125 kA/m by Pr70Al20Cu10,La70Al20Cu10 and Al75Cu25(at.%) alloys diffusion,respectively,due to the formation of(Nd,Pr)-Fe-B,La2 O3 and c-Nd2 O3 phases respectively,after diffusion.It is also found that the corrosion resistance can be improved by Al-Cu diffusion due to the positive effects of Al and Cu elements in grain boundary.The present results demonstrated the various coercivity enhancement mechanisms for the GBDP based on different diffusion sources,and provided feasible solutions for cost reduction of GBDP and NdFeB production by saving RE resource.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scale precipitates, were presented for preparing Al wire with high strength and high electrical conductivity based on the specially designed experiments for breaking the mutually exclusive relation between the strength and the electrical conductivity. The results show that the elongated grains could lead to a higher electrical conductivity in Al wire without sacrificing the strength;while, the <111> sharp texture can efficiently strengthen the Al wire without influencing the electrical conductivity. Furthermore, nano-scale precipitates with proper size can simultaneously improve the strength and electrical conductivity of Al alloy wire. Under the guidance of the above three key principles, Al wires with high strength and high conductivity were prepared.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.