Krüppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverseregulatory functions in cell growth, proliferation, differentiation, and embryogenesis. KLF4 and K...Krüppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverseregulatory functions in cell growth, proliferation, differentiation, and embryogenesis. KLF4 and KLF5 are two closelyrelated members of the KLF family that have a similar tissue distribution in embryos and adults. However, the two KLFsoften exhibit opposite effects on regulation of gene transcription, despite binding to similar, if not identical, cis-actingDNA sequences. In addition, KLF4 and 5 exert contrasting effects on cell proliferation in many instances; while KLF4is an inhibitor of cell growth, KLF5 stimulates proliferation. Here we review the biological properties and biochemicalmechanisms of action of the two KLFs in the context of growth regulation.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and m...Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and mechanical properties of the brazed joints was investigated. The results showed that the interfacial microstructure of brazed joint consisted of B2, O, ?3, and Ti2 Ni phase, while the width of brazing seams varied at different Nb contents. The room temperature shear strength reached359 MPa when the joints were brazed with eutectic Ti40Ni40Nb20 alloy at 1180?C for 20 min, and it was321, 308 and 256 MPa at 500, 650 and 800?C, respectively. Cracks primarily initiated and propagated in ?3compounds, and partially traversed B2+O region. Moreover, the fracture surface displayed typical ductile dimples when cracks propagated through B2+O region, which was favorable for the mechanical properties of the brazed joint.展开更多
SiO2–BN ceramic and Ti plate were joined by active brazing in vacuum with Ag–Cu–Ti+BN composite filler.The effect of BN content,brazing temperature and time on the microstructure and mechanical properties of the b...SiO2–BN ceramic and Ti plate were joined by active brazing in vacuum with Ag–Cu–Ti+BN composite filler.The effect of BN content,brazing temperature and time on the microstructure and mechanical properties of the brazed joints was investigated.The results showed that a continuous Ti N–Ti B2reaction layer formed adjacent to the SiO2–BN ceramic,whose thickness played a key role in the bonding properties.Four Ti–Cu compound layers,Ti2Cu,Ti3Cu4,Ti Cu2and Ti Cu4,were observed to border Ti substrate due to the strong affinity of Ti and Cu compared with Ag.The central part of the joint was composed of Ag matrix,over which some fine-grains distributed.The added BN particles reacted with Ti in the liquid filler to form fine Ti B whiskers and Ti N particles with low coefficients of thermal expansion(CTE),leading to the reduction of detrimental residual stress in the joint,and thus improving the joint strength.The maximum shear strength of 31 MPa was obtained when 3 wt%BN was added in the composite filler,which was 158%higher than that brazed with single Ag–Cu–Ti filler metal.The morphology and thickness of the reaction layer adjacent to the parent materials changed correspondingly with the increase of BN content,brazing temperature and holding time.Based on the correlation between the microstructural evolution and brazing parameters,the bonding mechanism of SiO2–BN and Ti was discussed.展开更多
The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, elec...The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.展开更多
The damping behavior of extruded Mg-xY(x=0.5,1.0,3.0 wt.%)sheets were investigated in detail concerning the effects of Y addition and temperature,and the relationship between damping capacity and yield strength was di...The damping behavior of extruded Mg-xY(x=0.5,1.0,3.0 wt.%)sheets were investigated in detail concerning the effects of Y addition and temperature,and the relationship between damping capacity and yield strength was discussed.At room temperature(RT),with Y content increasing from 0.5%to 3.0%,the damping capacity(Q-1)significantly decreased from 0.037 to 0.015.For all the studied sheets,the relationship between strain amplitude and Q-1 fitted well with the Granato and Liicke(G-L)dislocation damping model.With temperature increased,the G-L plots deviated from linearity indicating that the dislocation damping was not the only dominate mechanism,and the grain boundary sliding(GBS)could contribute to damping capacity.Consequently,the Q-1 increased remarkably above the critical temperature,and the critical temperature increased significantly from 50℃ to 290℃ with increasing Y contents from 0 to 3.0wt.%.This result implied that the segregation of Y solutes at grain boundary could depress the GBS,which was consistent with the recent finding of segregation tendency for rare-earth solutes.The extruded Mg-IY sheet exhibited slightly higher yield strength(Rp0.2)and Q-1 comparing with high-damping Mg-0.6Zr at RT.At an elevated temperature of 325℃,the Mg-IY sheet had similar Q-1 but over 3 times larger Rp0.2 than that of the pure Mg.The present study indicated that the extruded Mg-Y based alloys exhibited promising potential for developing high-performance damping alloys,especially for the elevated-temperature application.展开更多
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu...In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.展开更多
A novel method of liquid metallic film(LMF)bonding was developed to join titanium zirconium molybdenum alloy(TZM)and Nb-Zr alloy with a Ni interlayer.Using this method,a Ni-Zr liquid phase was formed by the eutectic r...A novel method of liquid metallic film(LMF)bonding was developed to join titanium zirconium molybdenum alloy(TZM)and Nb-Zr alloy with a Ni interlayer.Using this method,a Ni-Zr liquid phase was formed by the eutectic reaction and then squeezed out from the gap due to a transient pressure,leaving an LMF.It not only achieved a reliable metallurgical bonding but also served as a transition layer between TZM and Nb-Zr alloy to reduce the mismatch between them thus further improving its performance.The bonding mechanism of the TZM and Nb-Zr system was discussed based on theoretical calculation and high-resolution microscopy analysis.The advantages of this method were established by comparing the microstructure and mechanical properties of LMF bonded joints with that of traditional contact-reaction brazing and direct diffusion bonding.Additionally,the feasibility of the LMF bonding method was also demonstrated by the reliable joining of other high-temperature and immiscible systems.展开更多
The frequency veering of a metal porous rotating cantilever twisted plate with twist angle and stagger angle is investigated.Metal porous materials may have the characteristics of gradient or uniform distribution alon...The frequency veering of a metal porous rotating cantilever twisted plate with twist angle and stagger angle is investigated.Metal porous materials may have the characteristics of gradient or uniform distribution along the thickness direction.Based on the classical shell theory,considering the influence of centrifugal force produced by high-speed rotation,the free vibration equations of a rotating cantilever twisted plate are derived.Through the polynomial function and Rayleigh-Ritz method,the natural frequencies and mode shapes of the metal porous cantilever twisted plate in both static and rotating states are derived.The accuracy of the present theory and calculation results is confirmed by a comparison between them and the results available from the literature and those obtained from Abaqus.The influences of the thickness ratio,porosity,twist angle,stagger angle and rotational velocity on the frequency veering and mode shape shift of the rotating cantilever twisted plate with porous material under three different distributions are analyzed.It should be mentioned that the frequency veering accompanied by mode shape shift occurs in both static and dynamic states.展开更多
A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time met...A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.展开更多
A sensitivity study on the measurement of the CKM angle γ from B_(s)^(0)→D^(+)^(0)Ф decays is conducted us-ing the D-meson reconstructed in the quasi flavour-specific modes Kπ,K3π,and Kππ^(0),as well as CP-eige...A sensitivity study on the measurement of the CKM angle γ from B_(s)^(0)→D^(+)^(0)Ф decays is conducted us-ing the D-meson reconstructed in the quasi flavour-specific modes Kπ,K3π,and Kππ^(0),as well as CP-eigenstate modes KK and m,where the notation DO corresponds toa D0 or D0 meson.The LHCb experiment is presented as a use case.A statistical uncertainty of approximately 8°-19°can be achieved with the pp collision data collcted in the LHCb experiment from 2011 to 2018.The sensitivity to r should be of the order 3°-8°after accumulating 23 fb^(-1) of pp collision data by 2025,whereas it is expected to improve further by 300 fb^(-1) by the second half of the 2030 decade.The accuracy is dependent on the strong parameters r and og,which together with ydescribe the interfer-ence between the leading ampliudes of the B_(s)^(0)→D^(+)^(0)Ф decays.展开更多
Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enor...Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enormous direct health care costs,with some estimates for diseases.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy...The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
Visible-light color flters using patterned nanostructures have attracted much interest due to their various advantages such as compactness,enhanced stability,and environmental friendliness compared with traditional pi...Visible-light color flters using patterned nanostructures have attracted much interest due to their various advantages such as compactness,enhanced stability,and environmental friendliness compared with traditional pigment or dye-based optical flters.While most existing studies are based on planar nanostructures with lateral variation in size,shape,and arrangement,the vertical dimension of structures is a long-ignored degree of freedom for the structural colors.Herein,we demonstrate a synthetic platform for transmissive color flter array by coordinated manipulations between height-varying nanocavities and their lateral flling fractions.Te thickness variation of those nanocavities has been fully deployed as an alternative degree of freedom,yielding vivid colors with wide gamut and excellent saturation.Experimental results show that the color-rendering capability of the pixelated nanocavities can be still retained as pixels are miniaturized to 500 nm.Crosstalk between closely spaced pixels of a Bayer color flter arrangement was calculated,showing minimal crosstalk for 1μm2 square subpixels.Our work provides an approach to designing and fabricating ultracompact color flter arrays for various potential applications including stained-glass microprints,microspectrometers,and high-resolution image sensing systems.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,202...The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,2021.The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields,with a maximum fractional increase of 20%.The variations in trigger rates(increases or decreases)were found to be strongly dependent on the primary zenith angle.The flux of secondary particles increased significantly,following a trend similar to that of shower events.To better understand the observed behavior,Monte Carlo simulations were performed with CORSIKA and G4KM2A(a code based on GEANT4).We found that the experimental data(in saturated negative fields)were in good agreement with the simulations,assuming the presence of a uniform electric field of-700 V/cm with a thickness of 1500 m in the atmosphere above the observation level.Due to the acceleration/deceleration by the atmospheric electric field,the number of secondary particles with energy above the detector threshold was modified,resulting in the changes in shower detection rate.展开更多
Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot weldi...Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot welding (P-FSSW), the plastic strain during DP-FSSW is nearly symmetrical with respect to the bondline to suppress the extension of hook defect, which is detrimental to the joint mechanical strength. With DP-FSSW, a fully metallurgically bonded region has formed due to severe plastic deformation at high temperatures. Tensile/shear tests show that the joint strength could exceed 8 kN, which is comparable to P-FSSW and refill FSSW, and all fractures happen in a shear failure mode as cracks extend along the in terface of two sheets. The microhard ness profile exhibits a uniform distribution along the thick ness direction, in which the hook defect shows the lowest value.展开更多
基金This work was in part supported by grants from the National Institutes of Health(DK52230,DK64399 and CA84197).
文摘Krüppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverseregulatory functions in cell growth, proliferation, differentiation, and embryogenesis. KLF4 and KLF5 are two closelyrelated members of the KLF family that have a similar tissue distribution in embryos and adults. However, the two KLFsoften exhibit opposite effects on regulation of gene transcription, despite binding to similar, if not identical, cis-actingDNA sequences. In addition, KLF4 and 5 exert contrasting effects on cell proliferation in many instances; while KLF4is an inhibitor of cell growth, KLF5 stimulates proliferation. Here we review the biological properties and biochemicalmechanisms of action of the two KLFs in the context of growth regulation.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金supported by the National Natural Science Foundation of China (Grant No. 51574177)the China Natural Founds for Distinguished Young Scientists (Grant No. 51325401)the National High Technology Research and Development Program of China (“863” Program, Granted No. 2015AA042504)
文摘Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and mechanical properties of the brazed joints was investigated. The results showed that the interfacial microstructure of brazed joint consisted of B2, O, ?3, and Ti2 Ni phase, while the width of brazing seams varied at different Nb contents. The room temperature shear strength reached359 MPa when the joints were brazed with eutectic Ti40Ni40Nb20 alloy at 1180?C for 20 min, and it was321, 308 and 256 MPa at 500, 650 and 800?C, respectively. Cracks primarily initiated and propagated in ?3compounds, and partially traversed B2+O region. Moreover, the fracture surface displayed typical ductile dimples when cracks propagated through B2+O region, which was favorable for the mechanical properties of the brazed joint.
基金supported by the National Natural Science Foundation of China (No. 51405332)
文摘SiO2–BN ceramic and Ti plate were joined by active brazing in vacuum with Ag–Cu–Ti+BN composite filler.The effect of BN content,brazing temperature and time on the microstructure and mechanical properties of the brazed joints was investigated.The results showed that a continuous Ti N–Ti B2reaction layer formed adjacent to the SiO2–BN ceramic,whose thickness played a key role in the bonding properties.Four Ti–Cu compound layers,Ti2Cu,Ti3Cu4,Ti Cu2and Ti Cu4,were observed to border Ti substrate due to the strong affinity of Ti and Cu compared with Ag.The central part of the joint was composed of Ag matrix,over which some fine-grains distributed.The added BN particles reacted with Ti in the liquid filler to form fine Ti B whiskers and Ti N particles with low coefficients of thermal expansion(CTE),leading to the reduction of detrimental residual stress in the joint,and thus improving the joint strength.The maximum shear strength of 31 MPa was obtained when 3 wt%BN was added in the composite filler,which was 158%higher than that brazed with single Ag–Cu–Ti filler metal.The morphology and thickness of the reaction layer adjacent to the parent materials changed correspondingly with the increase of BN content,brazing temperature and holding time.Based on the correlation between the microstructural evolution and brazing parameters,the bonding mechanism of SiO2–BN and Ti was discussed.
基金supported by the National Natural Science Foundation of China(Nos.51401172 and 51601003)Sichuan Science and Technology Program(2019YJ0238)+1 种基金Fundamental Research Funds for the Central Universities(2682020ZT114)open funding of International Joint Laboratory for Light Alloys(MOE),Chongqing University。
文摘The microstructure, texture and mechanical property evolution of the extruded Mg-x Y(x = 1, 5 wt.%) alloys during equal channel angular pressing(ECAP) were systematically investigated using an optical microscope, electron backscatter diffraction(EBSD) and uniaxial tensile test. The Mg-Y alloys exhibited a weakened basal texture before the ECAP, and the texture was further weakened with the max basal poles dispersed along ~45° between the extrusion direction and the transverse direction after the ECAP. The Mg-5 Y alloys always exhibited a finer grain size comparing to that of Mg-1 Y for the same ECAP process. With a proper ECAP process, both the strength and elongation of Mg-5 Y alloy could be improved simultaneously after the ECAP, i.e., the yield strength(273.9 ± 1.2 MPa), ultimate strength(306.4 ± 3.0 MPa),and elongation(23.9 ± 1.0%) were increased by 10%, 6%, and 72%, respectively, comparing to that before the ECAP. This was considered to be arose from the combined effects of grain refinement, significant improved microstructure homogeneity and solid solution hardening.In addition, it was found that Mg-Y alloy with better comprehensive properties could be obtained by the decreasing-temperature ECAP processes. The yield strength-grain size relationship could be well described by the Hall-Petch relation for all the ECAPed Mg-Y alloys,which was consistent with that the texture changes did not significantly affect the average Schmid factors of basal, prismatic and pyramidal slips for both Mg-Y alloys.
基金This work was supported by National Natural Science Foundation of China(Nos.51401172 and 51601003)National University Student Innovation Experimental Project(No.201710613005)Sichuan Science and Technology Program(No.2019YJ0238).
文摘The damping behavior of extruded Mg-xY(x=0.5,1.0,3.0 wt.%)sheets were investigated in detail concerning the effects of Y addition and temperature,and the relationship between damping capacity and yield strength was discussed.At room temperature(RT),with Y content increasing from 0.5%to 3.0%,the damping capacity(Q-1)significantly decreased from 0.037 to 0.015.For all the studied sheets,the relationship between strain amplitude and Q-1 fitted well with the Granato and Liicke(G-L)dislocation damping model.With temperature increased,the G-L plots deviated from linearity indicating that the dislocation damping was not the only dominate mechanism,and the grain boundary sliding(GBS)could contribute to damping capacity.Consequently,the Q-1 increased remarkably above the critical temperature,and the critical temperature increased significantly from 50℃ to 290℃ with increasing Y contents from 0 to 3.0wt.%.This result implied that the segregation of Y solutes at grain boundary could depress the GBS,which was consistent with the recent finding of segregation tendency for rare-earth solutes.The extruded Mg-IY sheet exhibited slightly higher yield strength(Rp0.2)and Q-1 comparing with high-damping Mg-0.6Zr at RT.At an elevated temperature of 325℃,the Mg-IY sheet had similar Q-1 but over 3 times larger Rp0.2 than that of the pure Mg.The present study indicated that the extruded Mg-Y based alloys exhibited promising potential for developing high-performance damping alloys,especially for the elevated-temperature application.
基金the financial support of National Natural Science Foundation of China through grant nos.11872127,11832002,11732005Qin Xin Talents Cultivation ProgramBeijing Information Science&Technology University QXTCP A201901。
文摘In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.
基金financially supported by the National Natural Science Foundation of China(No.51875400)the Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery grant(RGPIN-2017-05187)the China Scholarship Council(CSC)。
文摘A novel method of liquid metallic film(LMF)bonding was developed to join titanium zirconium molybdenum alloy(TZM)and Nb-Zr alloy with a Ni interlayer.Using this method,a Ni-Zr liquid phase was formed by the eutectic reaction and then squeezed out from the gap due to a transient pressure,leaving an LMF.It not only achieved a reliable metallurgical bonding but also served as a transition layer between TZM and Nb-Zr alloy to reduce the mismatch between them thus further improving its performance.The bonding mechanism of the TZM and Nb-Zr system was discussed based on theoretical calculation and high-resolution microscopy analysis.The advantages of this method were established by comparing the microstructure and mechanical properties of LMF bonded joints with that of traditional contact-reaction brazing and direct diffusion bonding.Additionally,the feasibility of the LMF bonding method was also demonstrated by the reliable joining of other high-temperature and immiscible systems.
基金The authors acknowledge the financial support of National Natural Science Foundation of China(grant nos.11872127,11832002,and 11732005)the Qin Xin Talents Cultivation Program,Beijing Information Science&Technology University(QXTCP A201901)the Project of High-level Innovative Team Building Plan for Beijing Municipal Colleges and Universities(No.IDHT20180513).
文摘The frequency veering of a metal porous rotating cantilever twisted plate with twist angle and stagger angle is investigated.Metal porous materials may have the characteristics of gradient or uniform distribution along the thickness direction.Based on the classical shell theory,considering the influence of centrifugal force produced by high-speed rotation,the free vibration equations of a rotating cantilever twisted plate are derived.Through the polynomial function and Rayleigh-Ritz method,the natural frequencies and mode shapes of the metal porous cantilever twisted plate in both static and rotating states are derived.The accuracy of the present theory and calculation results is confirmed by a comparison between them and the results available from the literature and those obtained from Abaqus.The influences of the thickness ratio,porosity,twist angle,stagger angle and rotational velocity on the frequency veering and mode shape shift of the rotating cantilever twisted plate with porous material under three different distributions are analyzed.It should be mentioned that the frequency veering accompanied by mode shape shift occurs in both static and dynamic states.
基金The project supported by the National Natural Science Foundation of China(the 973 Project 2004CB619304).
文摘A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.
基金Supported by National Natural Science Foundation o f China(NSFC)(11925504,11975015)the 65^(th) batch of China Postdoctoral Fundthe Fundamental Research Funds for the Central Universities,CNRS/IN2P3(France),and STFC(United Kingdom)national agencies.Part of this work was supported through exchanges between Annecy,Beijing,and Clermont-Ferrand,by the France China Particle Physics Laboratory(i.e.FCPPL)。
文摘A sensitivity study on the measurement of the CKM angle γ from B_(s)^(0)→D^(+)^(0)Ф decays is conducted us-ing the D-meson reconstructed in the quasi flavour-specific modes Kπ,K3π,and Kππ^(0),as well as CP-eigenstate modes KK and m,where the notation DO corresponds toa D0 or D0 meson.The LHCb experiment is presented as a use case.A statistical uncertainty of approximately 8°-19°can be achieved with the pp collision data collcted in the LHCb experiment from 2011 to 2018.The sensitivity to r should be of the order 3°-8°after accumulating 23 fb^(-1) of pp collision data by 2025,whereas it is expected to improve further by 300 fb^(-1) by the second half of the 2030 decade.The accuracy is dependent on the strong parameters r and og,which together with ydescribe the interfer-ence between the leading ampliudes of the B_(s)^(0)→D^(+)^(0)Ф decays.
文摘Neurodegeneration is characterized by the progressive and permanent loss of neurons.Degeneration typically results in a debilitating loss of function in an otherwise healthy person.Neurodegenerative diseases have enormous direct health care costs,with some estimates for diseases.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)the National Natural Science Foundation of China(12022502,12205314,12105301,12261160362,12105294,U1931201)+2 种基金the Youth Innovation Promotion Association CAS(2022010)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)。
文摘The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金Te authors gratefully acknowledge the fnancial support from the National Natural Science Foundation of China(Grant nos.51722503 and 11574078).
文摘Visible-light color flters using patterned nanostructures have attracted much interest due to their various advantages such as compactness,enhanced stability,and environmental friendliness compared with traditional pigment or dye-based optical flters.While most existing studies are based on planar nanostructures with lateral variation in size,shape,and arrangement,the vertical dimension of structures is a long-ignored degree of freedom for the structural colors.Herein,we demonstrate a synthetic platform for transmissive color flter array by coordinated manipulations between height-varying nanocavities and their lateral flling fractions.Te thickness variation of those nanocavities has been fully deployed as an alternative degree of freedom,yielding vivid colors with wide gamut and excellent saturation.Experimental results show that the color-rendering capability of the pixelated nanocavities can be still retained as pixels are miniaturized to 500 nm.Crosstalk between closely spaced pixels of a Bayer color flter arrangement was calculated,showing minimal crosstalk for 1μm2 square subpixels.Our work provides an approach to designing and fabricating ultracompact color flter arrays for various potential applications including stained-glass microprints,microspectrometers,and high-resolution image sensing systems.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金Supported in China by National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)NSFC(U2031101,11475141,12147208)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,2021.The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields,with a maximum fractional increase of 20%.The variations in trigger rates(increases or decreases)were found to be strongly dependent on the primary zenith angle.The flux of secondary particles increased significantly,following a trend similar to that of shower events.To better understand the observed behavior,Monte Carlo simulations were performed with CORSIKA and G4KM2A(a code based on GEANT4).We found that the experimental data(in saturated negative fields)were in good agreement with the simulations,assuming the presence of a uniform electric field of-700 V/cm with a thickness of 1500 m in the atmosphere above the observation level.Due to the acceleration/deceleration by the atmospheric electric field,the number of secondary particles with energy above the detector threshold was modified,resulting in the changes in shower detection rate.
基金financially supported by the National Natural Science Foundation of China (No. 51574196)the Aeronautical Science Foundation of China (No. 20161125002)the “111 Project” (No. B08040)
文摘Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot welding (P-FSSW), the plastic strain during DP-FSSW is nearly symmetrical with respect to the bondline to suppress the extension of hook defect, which is detrimental to the joint mechanical strength. With DP-FSSW, a fully metallurgically bonded region has formed due to severe plastic deformation at high temperatures. Tensile/shear tests show that the joint strength could exceed 8 kN, which is comparable to P-FSSW and refill FSSW, and all fractures happen in a shear failure mode as cracks extend along the in terface of two sheets. The microhard ness profile exhibits a uniform distribution along the thick ness direction, in which the hook defect shows the lowest value.