The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within...The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton". All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southem margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1) primary, large-scale NW-SE-trend- ing convex and concave fault corrugations and (2) secondary ENE-WSW-trending antiforms and syn- forms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981) simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 4~Ar-39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of bornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122--120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shah foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5--6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.展开更多
Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on lo...Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).展开更多
This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equatio...This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.展开更多
基金sponsored by National Science Foundation grants EAR-9627909 and EAR-9903012 to Davisa China National Natural Sciences Foundation grant to Zheng+1 种基金a Louisiana State University research grant to DarbyRadiometric dating was done by George Gehrels of the University of Arizona(U-Pb) and by Terry Spell of the Nevada Isotope Geochronology Laboratory (Ar/Ar,funded in part by NSF grant EPS-9720162)
文摘The Early Cretaceous Hohhot metamorphic core complex (mcc) of the Daqing Shan (Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton". All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence. The master Hohhot detachment fault roots southwards within the southem margin of the Daqing Shan for an along-strike distance of at least 120 km. Its geometry in the range to the north is complicated by interference patterns between (1) primary, large-scale NW-SE-trend- ing convex and concave fault corrugations and (2) secondary ENE-WSW-trending antiforms and syn- forms that folded the detachment in its late kinematic history. As in the Whipple Mtns. of California, the Hohhot master detachment is not of the Wernicke (1981) simple rooted type; instead, it was spawned from a mid-crustal shear zone, the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate. 4~Ar-39Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca. 127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca. 119 Ma. Essentially synchronous cooling of bornblende, biotite, and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca. 122--120 Ma. Contrary to several recent reports, the master detachment clearly cuts across and dismembers older, north-directed thrust sheets of the Daqing Shah foreland fold-and-thrust belt. Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6 ± 2.4 Ma, thus defining within 5--6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.
基金partially supported by the National Key Research and Development Program of China(2016YFA0600104)supported by donations made by Delos Living LLC,and the Cyrus Tang Foundation+2 种基金supported by the National Natural Science Foundation of China(41471419)Beijing Institute of Urban Planningsupported by the Fundamental Research Funds for the Central Universities(CCNU19TD002).
文摘Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).
文摘This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.