An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments envi...An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component.展开更多
Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate dec...Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.展开更多
Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%)...Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treat- ments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications.展开更多
Simultaneous ipsilateral fractures involving radial head and distal end of radius are uncommon. We present our thoughts on which fracture should be addressed first. A 68-year-old lady sustained an ipsilateral fracture...Simultaneous ipsilateral fractures involving radial head and distal end of radius are uncommon. We present our thoughts on which fracture should be addressed first. A 68-year-old lady sustained an ipsilateral fracture of the right radial head and distal end of radius following a fall. Clinically her right elbow was posteriorly dislocated and right wrist was deformed. Plain radiographs showed an intraarticular fracture of the distal end of radius and a comminution radial head fracture with a proximally migrated radius. Magnetic resonance imaging (MRI) showed no significant ligament injuries. We addressed her distal radius first with an an atomical lock ing plate followed by her radial head with a radial head replacement. Our rationale to treat the distal end radius: first was to obtain a correct alignment of Lister's tubercle and correct the distal radius height. Lister's tubercle was used to guide for the correct rotation of the radial head prosthesis. Correcting the distal end fracture radial height helped us with length selection of the radial head prosthesis and address the proximally migrated radial shaft and neck. Postoperative radiographs showed an acceptable reduction. The Cooney score was 75 at 3 months postoperatively, which was equivalent to a fair functional outcome.展开更多
Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Resp...Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Response Surface Methodology(RSM).The Central Composite Design(CCD)was applied to determine the optimization of WGs and CF addition to the mortar compressive strength.Compressive strength and microstructure testing with Scanning Electron Microscope(SEM),Fourier-transform Infrared Spectroscopy(FT-IR),and X-Ray Diffraction(XRD)were conducted to specify the mechanical ability and bonding between the matrix,CF,and WGs.The results showed that the chemical treatment of CF produced 49.15%cellulose,with an average particle size of 1521μm.The regression of a second-order polynomial model yielded an optimum composition consisting of 12.776%WGs and 2.344%CF with a predicted compressive strength of 19.1023 MPa.C-S-H gels were identified in the mortars due to the dissolving of SiO_(2) in WGs and cement.The silica from WGs increased the C-S-H phase.CF plays a role in preventing,bridging,and branching micro-cracks before reaching maximum stress.WGs aggregates and chemically treated CF are suitable to be composited in mortar to increase compressive strength.展开更多
Natural fibre reinforced polymer composite(NFRPC)materials are gaining popularity in the modern world due to their eco-friendliness,lightweight nature,life-cycle superiority,biodegradability,low cost,and noble mechani...Natural fibre reinforced polymer composite(NFRPC)materials are gaining popularity in the modern world due to their eco-friendliness,lightweight nature,life-cycle superiority,biodegradability,low cost,and noble mechanical properties.Due to the wide variety of materials available that have comparable attributes and satisfy the requirements of the product design specification,material selection has become a crucial component of design for engineers.This paper discusses the study’s findings in choosing the suitable thermoplastic matrices of Natural Fibre Composites for Cyclist Helmet utilising the DMAIC,and GRA approaches.The results are based on integrating two decision methods implemented utilising two distinct decision-making approaches:qualitative and quantitative.This study suggested thermoplastic polyethylene as a particularly ideal matrix in composite cyclist helmets during the selection process for the best thermoplastic matrices material using the 6σtechnique,with the decision based on the highest performance,the lightest weight,and the most environmentally friendly criteria.The DMAIC and GRA approach significantly influenced the material selection process by offering different tools for each phase.In the future study,selection technique may have been more exhaustive if more information from other factors had been added.展开更多
This article reviews the literature reports base on agro waste plastic composites using different fiber as fillers and reinforcements. Various processing methods and conditions;compression molding process, injection m...This article reviews the literature reports base on agro waste plastic composites using different fiber as fillers and reinforcements. Various processing methods and conditions;compression molding process, injection molding, and extrusion method are used in the composites productions. Characterization challenges associated with the agro waste plastic composites productions were also examined. Thus, the findings of this research review can be use as a data base for further inquiring into the agro waste plastic composites in a view to enhance the development of the sector.展开更多
The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen...The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen as potential raw materials for particleboard in this study.The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard.The planting densities used were low,moderate-low,moderate-high,and high,representing 500,1000,1500,and 2000 trees/ha,respectively.Prior to manufacturing,the RRIM 2000 series clone trees were harvested,cut,chipped,flaked,and screened.The mechanical and physical properties were evaluated in accordance with the Japanese Industrial Standard(JIS A 5908-2003).The findings revealed that both planting density and clone had a significant impact on the mechanical and physical properties of particleboard with a thickness of 10 mm and a density of 700 kg/m3.RRIM 2020 specimens with low planting density had superior modulus of elasticity(MOE),modulus of rupture(MOR),and internal bonding(IB)values of 2415,19,and 1.7 MPa,respectively.Furthermore,moderate-low planting density demonstrated the lowest thickness swelling(TS)and water absorption(WA)values and was comparable to control particleboard from commercial clone Prang Besar(PB),PB260.In terms of rubber clones,RRIM 2020 particleboard met the minimum requirements of the JIS standard for mechanical properties and outperformed RRIM 2025.This study recommended a low planting density of 500 trees/ha and the RRIM 2020 clone as a suitable raw material for particleboard manufacturing with a ten percent urea formaldehyde resin content.展开更多
The contact characteristics of rigid cylinders lubricated by Newtonian liquids are inves-tigated in this paper using hard elastohydrodynamic lubrication (EHL) theory. Numerical modelingis formulated for the coupled se...The contact characteristics of rigid cylinders lubricated by Newtonian liquids are inves-tigated in this paper using hard elastohydrodynamic lubrication (EHL) theory. Numerical modelingis formulated for the coupled set of generalized pressure and plane strain elasticity equations for afinite plane model and a circular representation of the junction under a pure hard rolling line con-tact using boundary element method (BEM). Also a numerical routine is developed to compute filmthickness and pressure profiles and the results are evaluated for a range of possible dimen-sionless parameters such as speed and load. The hydrodynamic equation is also transformed intoa form of boundary integral equation, which is solved by Simpson’s rule. The elasticity equationwith boundary conditions was solved by constant and quadratic elements based on an iterativeprocedure by assuming an initial film thickness. From the comparative study between the presentNewtonian model and the previously published results proved to be very effective and efficient andhigh precision is easily achieved for such rolling elements as well. The computed results areshown to be amenable to standard boundary element formulation of EHL problem in the contactregion and show that speed and load have influential effects on the lubricating film shape.展开更多
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o...This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.展开更多
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m...Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing.展开更多
The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understa...The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted.展开更多
A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morp...A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.展开更多
This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45a...This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45and 70)of hybrid kenaf/glass fiber reinforced epoxy and glass fiber reinforced epoxy as contrast specimen.The automated filament winding technique has been used in fabrication of hybrid and non-hybrid composite tube and crashworthiness performance was investigated experimentally.The effects of winding orientation on energy absorption capabilities and crashworthiness characteristic were investigated through quasi-static compression load and the result are compared with the glass fiber composite tube to justify the capability of hybrid natural/synthetic as energy absorption application.Hybridized samples proved to enhancing the progressive crushing capability as combination of local buckling,delaminate and brittle fracturing as progressive crushing modes.In the view of winding orientation aspect,the results of high winding orientation of hybrid composite tube elevated the crush load efficiency,specific energy absorption and energy absorption capability compared to glass composite tube(GFRP).The hybrid kenaf/glass composite tube with high winding orientation showed the best winding orientation to enhance the energy absorber characteristics as energy absorption application.展开更多
A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites o...A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites of glass/sugar palm fibre were fabricated in different weight ratios of strand mat glass fibres : sugar palm fibres 4:0, 4:1, 4:2, 4:3, 4:4, and 0:4. The hybrid effects of glass and sugar palm fibre on tensile, flexural and impact properties of the composites were evaluated according to ASTM D5083, ASTM D790 and ASTM D256 respectively. Results have been established that properties of hybrid glass/sugar palm composites such as tensile strength, tensile modulus, elongation at break, toughness, flexural strength, flexural modulus and impact strength are a function of fibre content. The failure mechanism and the adhesion between fibres/matrix were studied by observing the scanning electron micrographs of impact fracture samples. In general, the incorporation of both fibres into unsaturated polyester matrix shows a regular trend of increase in the mechanical properties.展开更多
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther...The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.展开更多
The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,espec...The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.展开更多
In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist o...In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist of technical aspects(T),the economic point of view(E)and availability(A),and it’s also called as TEA requirement.This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage.In this study,the TEA requirement will integrate with the analytical hierarchy process(AHP)to assist decision makers or manufacturing engineers in determining the most appropriate manufacturing process to be employed in the manufacture of a composite automotive crash box(ACB)at the early stage of the product development process.It is obvious that a major challenge in the manufacturing selection process is lack of information regarding manufacturing of ACB using natural fibre composite(NFC).There have been no previous studies that examined ranking manufacturability processes in terms of their suitability.Therefore,the TEA-AHP hybrid method was introduced to provide unprejudiced criteria-ranking selection prior to evaluation of pairwise comparisons.At the end of this study,the pulforming process was selected as the best manufacturing process for fabrication of the ACB structural component.展开更多
This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design conce...This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design concept.This paper also demonstrates the use of the integrated Theory of Inventive Problem Solving(Function-Oriented Search)(TRIZ(FOS))and Biomimetics method,as well as the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The aim of this study was to generate design concepts that were inspired by nature and to select the best design concept for the composite side-door impact beam.Subsequently,eight design concepts were generated using the TRIZ(FOS)-Biomimetics method and finite element analysis were used to analyse their performance and weight criteria using ANSYS software.VIKOR method was used as the multiple criteria decision making tools to compare their performances,weight and cost criteria.As a result,design concepts B-03 and C-02 were ranked as the first and second best,with VIKOR value of 0.0156 and 0.1178,respectively,which satisfied the conditions in VIKOR method.This paper shows that the integrated method of TRIZ(FOS)-Biomimetics and VIKOR can assist researchers and engineers in developing designs that are inspired by nature,as well as in selecting the best design concept using a systematic strategy and justified solutions during the conceptual design stage.展开更多
基金Universiti Kuala Lumpurthe Ministry of Higher Education,Malaysia for providing the scholarship award and financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from Ministry of Higher Education,Malaysia
文摘An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component.
基金the financial support through Research University Grant Scheme 2007 (RUG 2007) with vote number 91045
文摘Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.
文摘Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treat- ments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications.
文摘Simultaneous ipsilateral fractures involving radial head and distal end of radius are uncommon. We present our thoughts on which fracture should be addressed first. A 68-year-old lady sustained an ipsilateral fracture of the right radial head and distal end of radius following a fall. Clinically her right elbow was posteriorly dislocated and right wrist was deformed. Plain radiographs showed an intraarticular fracture of the distal end of radius and a comminution radial head fracture with a proximally migrated radius. Magnetic resonance imaging (MRI) showed no significant ligament injuries. We addressed her distal radius first with an an atomical lock ing plate followed by her radial head with a radial head replacement. Our rationale to treat the distal end radius: first was to obtain a correct alignment of Lister's tubercle and correct the distal radius height. Lister's tubercle was used to guide for the correct rotation of the radial head prosthesis. Correcting the distal end fracture radial height helped us with length selection of the radial head prosthesis and address the proximally migrated radial shaft and neck. Postoperative radiographs showed an acceptable reduction. The Cooney score was 75 at 3 months postoperatively, which was equivalent to a fair functional outcome.
基金funded by the Ministry of Education,Culture,Research,and the Technology,Indonesia for Matching Fund (Kedaireka)Scheme in 2022 with Contract No.155/E1/KS.06.02/2022.
文摘Waste Glass(WGs)and Coir Fiber(CF)are not widely utilized,even though their silica and cellulose content can be used to create construction materials.This study aimed to optimize mortar compressive strength using Response Surface Methodology(RSM).The Central Composite Design(CCD)was applied to determine the optimization of WGs and CF addition to the mortar compressive strength.Compressive strength and microstructure testing with Scanning Electron Microscope(SEM),Fourier-transform Infrared Spectroscopy(FT-IR),and X-Ray Diffraction(XRD)were conducted to specify the mechanical ability and bonding between the matrix,CF,and WGs.The results showed that the chemical treatment of CF produced 49.15%cellulose,with an average particle size of 1521μm.The regression of a second-order polynomial model yielded an optimum composition consisting of 12.776%WGs and 2.344%CF with a predicted compressive strength of 19.1023 MPa.C-S-H gels were identified in the mortars due to the dissolving of SiO_(2) in WGs and cement.The silica from WGs increased the C-S-H phase.CF plays a role in preventing,bridging,and branching micro-cracks before reaching maximum stress.WGs aggregates and chemically treated CF are suitable to be composited in mortar to increase compressive strength.
文摘Natural fibre reinforced polymer composite(NFRPC)materials are gaining popularity in the modern world due to their eco-friendliness,lightweight nature,life-cycle superiority,biodegradability,low cost,and noble mechanical properties.Due to the wide variety of materials available that have comparable attributes and satisfy the requirements of the product design specification,material selection has become a crucial component of design for engineers.This paper discusses the study’s findings in choosing the suitable thermoplastic matrices of Natural Fibre Composites for Cyclist Helmet utilising the DMAIC,and GRA approaches.The results are based on integrating two decision methods implemented utilising two distinct decision-making approaches:qualitative and quantitative.This study suggested thermoplastic polyethylene as a particularly ideal matrix in composite cyclist helmets during the selection process for the best thermoplastic matrices material using the 6σtechnique,with the decision based on the highest performance,the lightest weight,and the most environmentally friendly criteria.The DMAIC and GRA approach significantly influenced the material selection process by offering different tools for each phase.In the future study,selection technique may have been more exhaustive if more information from other factors had been added.
文摘This article reviews the literature reports base on agro waste plastic composites using different fiber as fillers and reinforcements. Various processing methods and conditions;compression molding process, injection molding, and extrusion method are used in the composites productions. Characterization challenges associated with the agro waste plastic composites productions were also examined. Thus, the findings of this research review can be use as a data base for further inquiring into the agro waste plastic composites in a view to enhance the development of the sector.
基金The authors would like to thank the Ministry of Science,Technology,and Innovation and Ministry of Higher Education as well as the Institute of Tropical Forestry and Forest Products,Universiti Putra Malaysia,for providing the fund INTROP HICOE-(6369115).
文摘The depletion of log resources encourages research into alternative ways to sustain the wood supply.Therefore,the 4-year-old Rubber Research Institute of Malaysia(RRIM)clones series,RRIM 2020 and RRIM 2025,were chosen as potential raw materials for particleboard in this study.The purpose of this study was to assess the effects of planting density and rubber tree clones on the mechanical and physical properties of single-layer particleboard.The planting densities used were low,moderate-low,moderate-high,and high,representing 500,1000,1500,and 2000 trees/ha,respectively.Prior to manufacturing,the RRIM 2000 series clone trees were harvested,cut,chipped,flaked,and screened.The mechanical and physical properties were evaluated in accordance with the Japanese Industrial Standard(JIS A 5908-2003).The findings revealed that both planting density and clone had a significant impact on the mechanical and physical properties of particleboard with a thickness of 10 mm and a density of 700 kg/m3.RRIM 2020 specimens with low planting density had superior modulus of elasticity(MOE),modulus of rupture(MOR),and internal bonding(IB)values of 2415,19,and 1.7 MPa,respectively.Furthermore,moderate-low planting density demonstrated the lowest thickness swelling(TS)and water absorption(WA)values and was comparable to control particleboard from commercial clone Prang Besar(PB),PB260.In terms of rubber clones,RRIM 2020 particleboard met the minimum requirements of the JIS standard for mechanical properties and outperformed RRIM 2025.This study recommended a low planting density of 500 trees/ha and the RRIM 2020 clone as a suitable raw material for particleboard manufacturing with a ten percent urea formaldehyde resin content.
文摘The contact characteristics of rigid cylinders lubricated by Newtonian liquids are inves-tigated in this paper using hard elastohydrodynamic lubrication (EHL) theory. Numerical modelingis formulated for the coupled set of generalized pressure and plane strain elasticity equations for afinite plane model and a circular representation of the junction under a pure hard rolling line con-tact using boundary element method (BEM). Also a numerical routine is developed to compute filmthickness and pressure profiles and the results are evaluated for a range of possible dimen-sionless parameters such as speed and load. The hydrodynamic equation is also transformed intoa form of boundary integral equation, which is solved by Simpson’s rule. The elasticity equationwith boundary conditions was solved by constant and quadratic elements based on an iterativeprocedure by assuming an initial film thickness. From the comparative study between the presentNewtonian model and the previously published results proved to be very effective and efficient andhigh precision is easily achieved for such rolling elements as well. The computed results areshown to be amenable to standard boundary element formulation of EHL problem in the contactregion and show that speed and load have influential effects on the lubricating film shape.
基金Universiti Putra Malaysia and Science and Technology Research Institute for Defence (STRIDE) for supporting the research activity
文摘This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.
文摘Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing.
基金Universiti Putra Malaysia for financial support via the Graduate Research Fellowship (GRF) scholarship through the School of Graduate Study (UPM/SPS/ GS47054) for providing a scholarship to the principal author to carry out this research projectHiCOE grant (6369107) from Ministry of Higher Education Malaysia
文摘The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted.
基金Project(6369107)supported by the Ministry of Higher Education,Malaysia
文摘A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.
基金The authors would like to show appreciation to Universiti Putra Malaysia for financial support via the Graduate Research Fellowship(GRF)scholarship through the School of Graduate Study(UPM/SPS/GS47054)for providing a scholarship to the principal author to carry out this research project and HiCOE grant(6369107)from Ministry of Higher Education Malaysia.
文摘This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45and 70)of hybrid kenaf/glass fiber reinforced epoxy and glass fiber reinforced epoxy as contrast specimen.The automated filament winding technique has been used in fabrication of hybrid and non-hybrid composite tube and crashworthiness performance was investigated experimentally.The effects of winding orientation on energy absorption capabilities and crashworthiness characteristic were investigated through quasi-static compression load and the result are compared with the glass fiber composite tube to justify the capability of hybrid natural/synthetic as energy absorption application.Hybridized samples proved to enhancing the progressive crushing capability as combination of local buckling,delaminate and brittle fracturing as progressive crushing modes.In the view of winding orientation aspect,the results of high winding orientation of hybrid composite tube elevated the crush load efficiency,specific energy absorption and energy absorption capability compared to glass composite tube(GFRP).The hybrid kenaf/glass composite tube with high winding orientation showed the best winding orientation to enhance the energy absorber characteristics as energy absorption application.
文摘A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites of glass/sugar palm fibre were fabricated in different weight ratios of strand mat glass fibres : sugar palm fibres 4:0, 4:1, 4:2, 4:3, 4:4, and 0:4. The hybrid effects of glass and sugar palm fibre on tensile, flexural and impact properties of the composites were evaluated according to ASTM D5083, ASTM D790 and ASTM D256 respectively. Results have been established that properties of hybrid glass/sugar palm composites such as tensile strength, tensile modulus, elongation at break, toughness, flexural strength, flexural modulus and impact strength are a function of fibre content. The failure mechanism and the adhesion between fibres/matrix were studied by observing the scanning electron micrographs of impact fracture samples. In general, the incorporation of both fibres into unsaturated polyester matrix shows a regular trend of increase in the mechanical properties.
基金Universiti Kuala Lumpur(UniKL)the Ministry of Education Malaysia for providing the scholarship award+1 种基金financially support through UniKL Grant Scheme(STRG 15144)to the principal author in this projectHiCOE grant(6369107)from the Ministry of Education,Malaysia。
文摘The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature.
基金provided through the Putra Grant IPS(GP-IPS/2016/9515100)。
文摘The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.
文摘In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist of technical aspects(T),the economic point of view(E)and availability(A),and it’s also called as TEA requirement.This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage.In this study,the TEA requirement will integrate with the analytical hierarchy process(AHP)to assist decision makers or manufacturing engineers in determining the most appropriate manufacturing process to be employed in the manufacture of a composite automotive crash box(ACB)at the early stage of the product development process.It is obvious that a major challenge in the manufacturing selection process is lack of information regarding manufacturing of ACB using natural fibre composite(NFC).There have been no previous studies that examined ranking manufacturability processes in terms of their suitability.Therefore,the TEA-AHP hybrid method was introduced to provide unprejudiced criteria-ranking selection prior to evaluation of pairwise comparisons.At the end of this study,the pulforming process was selected as the best manufacturing process for fabrication of the ACB structural component.
基金the financial support provided through the Putra Grant IPS(GP-IPS/2016/9515100)Universiti Teknikal Malaysia Melaka and Ministry of Education Malaysia for providing scholarship to the principal author to carry out this research project.
文摘This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design concept.This paper also demonstrates the use of the integrated Theory of Inventive Problem Solving(Function-Oriented Search)(TRIZ(FOS))and Biomimetics method,as well as the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The aim of this study was to generate design concepts that were inspired by nature and to select the best design concept for the composite side-door impact beam.Subsequently,eight design concepts were generated using the TRIZ(FOS)-Biomimetics method and finite element analysis were used to analyse their performance and weight criteria using ANSYS software.VIKOR method was used as the multiple criteria decision making tools to compare their performances,weight and cost criteria.As a result,design concepts B-03 and C-02 were ranked as the first and second best,with VIKOR value of 0.0156 and 0.1178,respectively,which satisfied the conditions in VIKOR method.This paper shows that the integrated method of TRIZ(FOS)-Biomimetics and VIKOR can assist researchers and engineers in developing designs that are inspired by nature,as well as in selecting the best design concept using a systematic strategy and justified solutions during the conceptual design stage.