Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o...Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.展开更多
A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity...A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.展开更多
This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumou...This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.展开更多
Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications ...Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications was developed. An ingot of five tons was successfully melted by thrice vacuum consumable arc melting. The microstructure and elements partitioning of different conditions were investigated systematically. The results suggest that the hierarchical structures of micro-scale first α phase(αf), nano-scale secondary α phase(αs), and ultrafine FCC substructures can be tailored by solution plus aging(STA) heat treatment. The lateral and epitaxial growth of αfphase promotes the HCP-α to FCC substructure transformation with the help of elements partitioning during the aging process. Moreover, the element V, generally regarded as β stabilizer, is found to mainly concentrate in the Al-rich αfphase in this study probably due to its relatively lower content and the strong bonding energy of Al-V. The hierarchical structure has a strong interaction with dislocations, which contributes to achieve a superhigh strength of 1376 MPa.In addition, the plastic strain is partitioned in the multi-scale precipitates(such as the α and FCC substructures) and β matrix, resulting in a considerable plasticity. TEM observation demonstrates that high density entangled dislocations at interfaces and mechanical twins exist in the STA sample after tensile test. It can be deduced that both dislocation slipping and twinning mechanisms are present in this alloy.Therefore, TB17 alloy can serve as an excellent candidate for structural materials on aircrafts that require high strength and lightweight.展开更多
A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navie...A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navier-Stokes(N-S)equations and lattice Boltzmann equation(LBE).The macroscopic differential equations are discretized by the finite volume method,where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers.The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh,tie-up of mesh spacing and time interval,limitation to viscous flows.LBFS is validated by its application to simulate the viscous decaying vortex flow,the driven cavity flow,the viscous flow past a circular cylinder,and the inviscid flow past a circular cylinder.The obtained numerical results compare very well with available data in the literature,which show that LBFS has the second order of accuracy in space,and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.展开更多
Understanding the long-term corrosion behavior of neutron absorber materials in H_(3)BO_(3)solution is crucial for the materials applications in spent fuel storage.In this paper,long-term corrosion evolution for 180 d...Understanding the long-term corrosion behavior of neutron absorber materials in H_(3)BO_(3)solution is crucial for the materials applications in spent fuel storage.In this paper,long-term corrosion evolution for 180 d in relation to the structural heterogeneities of an Fe-based amorphous coating(AMC)in H_(3)BO_(3)solution at various temperatures was systematically investigated.Results indicate that the coating corrosion could be divided into three distinct stages.Initially,the corrosion resistance increased owing to the thickening and composition evolution of the passive films.Subsequently,the corrosion rate was kept almost constant in the second stage,which connected with the steady state of the passive film.Finally,the corrosion resistance of coating reduced gradually owing to the initiation and penetration of local-ized corrosion.Interestingly,it was revealed that the localized corrosion was initiated at the relatively Cr-depleted amorphous matrix in the deep pores of the coating.This could be attributed to the synergy of Cr-depletion and occlusive effect in the deep pores during long-term immersion.With the elevation of temperature,the localized corrosion was enhanced due to the accumulation of the H+in the pores to swiftly reach the critical conditions for passive film breakdown.This work provides insights into the long-term corrosion mechanism of Fe-based AMCs in H_(3)BO_(3)solution and offers meaningful contributions to the design of new corrosion resistant neutron absorbing coatings for spent fuel storage applications.展开更多
We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks an...We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks and employ the Fourier positional encodings to enable the approximation of high-frequency modes.We formulate a self-supervised training objective for spectral learning and propose a novel regularization mechanism to ensure that the network finds the exact eigenfunctions instead of a space spanned by the eigenfunctions.Furthermore,we investigate the effect of weight normalization as a mechanism to alleviate the risk of recovering linear dependent modes,allowing us to accurately recover a large number of eigenpairs.The effectiveness of our methods is demonstrated across a collection of representative benchmarks including both local and non-local diffusion operators,as well as high-dimensional time-series data from a video sequence.Our results indicate that the present algorithm can outperform competing approaches in terms of both approximation accuracy and computational cost.展开更多
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and c...Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.展开更多
In this paper,a hybrid lattice Boltzmann flux solver(LBFS)is proposed for simulation of viscous compressible flows.In the solver,the finite volume method is applied to solve the Navier-Stokes equations.Different from ...In this paper,a hybrid lattice Boltzmann flux solver(LBFS)is proposed for simulation of viscous compressible flows.In the solver,the finite volume method is applied to solve the Navier-Stokes equations.Different from conventional Navier-Stokes solvers,in this work,the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model,while the viscous flux is still approximated by conventional smooth function approximation.The present work overcomes the two major drawbacks of existing LBFS[28–31],which is used for simulation of inviscid flows.The first one is its ability to simulate viscous flows by including evaluation of viscous flux.The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux,which takes a value close to zero in the boundary layer and one around the strong shock wave.Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.展开更多
This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is...This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model,while the tangential flux is calculated using the same way as used in the conventional Euler solvers.The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM.The platform is formed from the conservation forms of moments.Under the platform,both the equilibrium distribution functions and lattice velocities can be determined,and therefore,non-free parameter model can be developed.The paper particularly presents three typical non-free parameter models,D1Q3,D1Q4 and D1Q5.The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems.Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number.From the results,it seems that D1Q4 model could be the best choice for the FVLBM simulation of hypersonic flows.展开更多
We have studied the optical and magnetic properties of ytterbium implanted GaN epilayer grown on (0001) sapphire by metalorganic chemical vapor by deposition (MOCVD). Samples were implanted at room temperature with Yb...We have studied the optical and magnetic properties of ytterbium implanted GaN epilayer grown on (0001) sapphire by metalorganic chemical vapor by deposition (MOCVD). Samples were implanted at room temperature with Yb ions at dose 4 1015 cm-2 and energy of 150 keV. The implanted samples were annealed at 1000 C in N2 at atmospheric pressure to recover implantation damages. The photoluminescence (PL), PL excitation (PLE), and PL kinetics have been studied with continuous and pulse photo-excitations in 360-1100 nm spectral range at different temperatures. The characteristic Yb3+ ion emission spectra were observed in the spectral range between 970-1050 nm. Theoretical fittings of the experimental PL temperature and PL kinetics data suggest that Yb3+ ions are involved in at least two major luminescence centers. The PLE spectra indicate that excitation of the Yb3+ ion occurs via electron-hole pair generation and complex processes. Magnetization versus magnetic field curves shows an enhancement of magnetic order for Yb-implanted samples in 5 K to 300 K temperature range. The Yb-implanted GaN sample showing weak ferromagnetic behavior was compared with the ferromagnetic in situ doped GaYbN material.展开更多
A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete se...A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete set of force densityto represent the effect of boundary. In the conventional IB-LBM, such force density ispre-determined, which cannot guarantee exact satisfaction of non-slip boundary condition. In this study, the force density is transferred to the unknown velocity correctionwhich is determined by enforcing the non-slip boundary condition. For the particulateflows, accurate calculation of hydrodynamic force exerted on the boundary of particlesis of great importance as it controls the motion of particles. The capability of presentmethod for particulate flows is depicted by simulating migration of one particle in asimple shear flow and sedimentation of one particle in a box and two particles in achannel. The expected phenomena and numerical results are achieved. In addition,particle suspension in a 2D symmetric stenotic artery is also simulated.展开更多
We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,c...We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,cutoff energy,and beam spot of protons in the experiments,and these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties.It is found that with a laser intensity of 8×10^(19) W/cm^(2),target normal sheath acceleration is the dominant mechanism for both types of target.For a plastic target,the higher charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams,and the larger divergence angle of the protons is due to the deflection of hot electrons during transport in the targets.We also find that the energy loss of hot electrons in targets of different thickness has a significant effect on the proton cutoff energy.The consistent results obtained here further narrow the gap between simulations and experiments.展开更多
The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the s...The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability.展开更多
Objective:To better evaluate tertiary Gleason pattern reporting and to evaluate the impact of tertiary Gleason pattern 5(TP5)on prostate cancer pathological features and biochemical recurrence at our large single inst...Objective:To better evaluate tertiary Gleason pattern reporting and to evaluate the impact of tertiary Gleason pattern 5(TP5)on prostate cancer pathological features and biochemical recurrence at our large single institution.Methods:We retrospectively reviewed 1962 patients who underwent radical prostatectomy(RP)for prostate cancer;TP5 was reported in 159 cases(8.1%).Men with Gleason score(GS)7 and GS 8 disease were divided into subgroups with and without TP5,and histopathological features were compared.Multivariate analyses were conducted to assess the impact on TP5 on biochemical-free survival(BFS).Results:Tumors possessing GS 3+4 with TP5 were more likely to exhibit extraprostatic extension(EPE)and had a larger tumor diameter(TD)than GS 3+4 alone.GS 3+4 with TP5 was also associated with positive surgical margins(SM),seminal vesicle involvement(SVI),and higher pre-operative prostate-specific antigen(PSA)values,but without statistical significance.GS 4+3 with TP5 more commonly presented with EPE,positive SM,SVI,and greater TD and pre-operative PSA level than GS 4+3 alone.In multivariate analysis,Gleason score,EPE,and TP5 were overall independent risk factors for PSA recurrence in this cohort.Additionally,GS 4+3 with TP5 was associated with shorter time to recurrence versus GS 4+3 alone.Conclusion:Our results emphasize the importance of TP5 and suggest that criteria for tertiary pattern reporting in prostate cancer should be standardized.Further studies are needed to evaluate the role of tertiary patterns in prognostic models.展开更多
CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide(CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted deg...CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide(CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted degradation of Reactive Black-5 dye. A detailed mechanism for the formation of CuO nanostructures has been proposed.The effect of various experimental parameters such as catalyst amount, dye concentration,p H and oxidizing agent on the dye degradation efficiency was studied. About 87% dye was degraded at p H 2 in the presence of CuO nanosheets under visible light. The enhanced photocatalytic activity of CuO nanosheets can be ascribed to good crystallinity, grain size,surface morphology and a strong absorption in the visible region. CuO is found to be a promising catalyst for industrial waste water treatment.展开更多
Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(...Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.展开更多
We studied the multilayering effects of InGaAs quantum dots(QDs) on GaAs(731), a surface lying inside of the stereographic triangle. The surfaces after stacking 16 InGaAs layers were characterized with highly non-unif...We studied the multilayering effects of InGaAs quantum dots(QDs) on GaAs(731), a surface lying inside of the stereographic triangle. The surfaces after stacking 16 InGaAs layers were characterized with highly non-uniformity of QD spatial distribution. The bunched step regions driven by strain accumulation are decorated by QDs, therefore GaAs(731) becomes a good candidate substrate for the growth of QD clusters. The unique optical properties of the QD clusters are revealed by photoluminescence measurements. By adjusting the coverage of InGaAs, a bamboo-like nanostructured surface was observed and the quantum dots aligned up in clusters to separate the "bamboo" into sections.展开更多
Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possi...Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer,γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40231016) the National Science Foundation of America (No. DEB-00-01686).
文摘Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.
文摘A search for the rare decays W^(+)→D_(s)^(+)γ and Z→D0γis performed using proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 13TeV,corresponding to an integrated luminosity of 2.0fb−1.No significant signal is observed for either decay mode and upper limits on their branching fractions are set using W^(+)→D_(s)^(+)γ and Z→μ+μ−decays as normalization channels.The upper limits are 6.5×10^(−4) and 2.1×10^(−3) at 95% confidence level for the W^(+)→D_(s)^(+)γ and Z→D^(0)γ decay modes,respectively.This is the first reported search for the Z→D^(0)γ decay,while the upper limit on the W+→D+sγbranching fraction improves upon the previous best limit.
基金supported by the National Natural Science Foundation of China (10772051)the State Scholarship Fund of China (2009610108)the Ninth Innovation Fundfor Graduate Students of Fudan University (YAN CAI)
文摘This paper proposes a more realistic mathematical simulation method to investigate the dynamic process of tumour angio-genesis by fully coupling the vessel growth,tumour growth and associated blood perfusion.The tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction.The haemodynamic calculation is carried out on the new vasculature,and an estimation of vessel collapse is made according to the wall shear stress criterion.The results are consistent with physiological observations,and further confirm the application of the coupled model feedback mechanism.The model is available to examine the interactions between angiogenesis and tumour growth,to study the change in the dynamic process of chemical environment and the vessel remodeling.
基金financial support from “13th five-year plan” equipment pre-research project of China (41422010501)。
文摘Based on the general [Mo] equivalent criterion and d-electron orbital theory, a new ultrahigh-strength βtitanium alloy with eight major elements(Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-2Sn-1V, TB17) for industrial applications was developed. An ingot of five tons was successfully melted by thrice vacuum consumable arc melting. The microstructure and elements partitioning of different conditions were investigated systematically. The results suggest that the hierarchical structures of micro-scale first α phase(αf), nano-scale secondary α phase(αs), and ultrafine FCC substructures can be tailored by solution plus aging(STA) heat treatment. The lateral and epitaxial growth of αfphase promotes the HCP-α to FCC substructure transformation with the help of elements partitioning during the aging process. Moreover, the element V, generally regarded as β stabilizer, is found to mainly concentrate in the Al-rich αfphase in this study probably due to its relatively lower content and the strong bonding energy of Al-V. The hierarchical structure has a strong interaction with dislocations, which contributes to achieve a superhigh strength of 1376 MPa.In addition, the plastic strain is partitioned in the multi-scale precipitates(such as the α and FCC substructures) and β matrix, resulting in a considerable plasticity. TEM observation demonstrates that high density entangled dislocations at interfaces and mechanical twins exist in the STA sample after tensile test. It can be deduced that both dislocation slipping and twinning mechanisms are present in this alloy.Therefore, TB17 alloy can serve as an excellent candidate for structural materials on aircrafts that require high strength and lightweight.
文摘A lattice Boltzmann flux solver(LBFS)is presented in this work for simulation of incompressible viscous and inviscid flows.The new solver is based on Chapman-Enskog expansion analysis,which is the bridge to link Navier-Stokes(N-S)equations and lattice Boltzmann equation(LBE).The macroscopic differential equations are discretized by the finite volume method,where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers.The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh,tie-up of mesh spacing and time interval,limitation to viscous flows.LBFS is validated by its application to simulate the viscous decaying vortex flow,the driven cavity flow,the viscous flow past a circular cylinder,and the inviscid flow past a circular cylinder.The obtained numerical results compare very well with available data in the literature,which show that LBFS has the second order of accuracy in space,and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.
基金supported by the National Natural Science Foundation of China(Nos.U1908219 and 52171163)the Key Research Program of the Chinese Academy of Sciences(NO.ZDRW-CN-2021-2-2).
文摘Understanding the long-term corrosion behavior of neutron absorber materials in H_(3)BO_(3)solution is crucial for the materials applications in spent fuel storage.In this paper,long-term corrosion evolution for 180 d in relation to the structural heterogeneities of an Fe-based amorphous coating(AMC)in H_(3)BO_(3)solution at various temperatures was systematically investigated.Results indicate that the coating corrosion could be divided into three distinct stages.Initially,the corrosion resistance increased owing to the thickening and composition evolution of the passive films.Subsequently,the corrosion rate was kept almost constant in the second stage,which connected with the steady state of the passive film.Finally,the corrosion resistance of coating reduced gradually owing to the initiation and penetration of local-ized corrosion.Interestingly,it was revealed that the localized corrosion was initiated at the relatively Cr-depleted amorphous matrix in the deep pores of the coating.This could be attributed to the synergy of Cr-depletion and occlusive effect in the deep pores during long-term immersion.With the elevation of temperature,the localized corrosion was enhanced due to the accumulation of the H+in the pores to swiftly reach the critical conditions for passive film breakdown.This work provides insights into the long-term corrosion mechanism of Fe-based AMCs in H_(3)BO_(3)solution and offers meaningful contributions to the design of new corrosion resistant neutron absorbing coatings for spent fuel storage applications.
基金Project supported by the U.S.Department of Energy under the Advanced Scientific Computing Research Program(No.DE-SC0019116)the U.S.Air Force Office of Scientific Research(No.AFOSR FA9550-20-1-0060)。
文摘We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks and employ the Fourier positional encodings to enable the approximation of high-frequency modes.We formulate a self-supervised training objective for spectral learning and propose a novel regularization mechanism to ensure that the network finds the exact eigenfunctions instead of a space spanned by the eigenfunctions.Furthermore,we investigate the effect of weight normalization as a mechanism to alleviate the risk of recovering linear dependent modes,allowing us to accurately recover a large number of eigenpairs.The effectiveness of our methods is demonstrated across a collection of representative benchmarks including both local and non-local diffusion operators,as well as high-dimensional time-series data from a video sequence.Our results indicate that the present algorithm can outperform competing approaches in terms of both approximation accuracy and computational cost.
基金supported by the National Natural Science Foundation of China (Grants 11232003, 91315302, 11502035)the Open Research Foundation (Grant GZ1404) of State Key Laboratory of Structural Analysis for Industrial Equipment at Dalian University of Technology
文摘Bi-modulus materials with different mechanical responses in tension and compression are often found in civil,composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions.The original problem is transformed into a standard linear complementarity problem(LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes.Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
基金supported by the State Key Laboratory of Aerodynamics of China(No.SKLA201401).
文摘In this paper,a hybrid lattice Boltzmann flux solver(LBFS)is proposed for simulation of viscous compressible flows.In the solver,the finite volume method is applied to solve the Navier-Stokes equations.Different from conventional Navier-Stokes solvers,in this work,the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model,while the viscous flux is still approximated by conventional smooth function approximation.The present work overcomes the two major drawbacks of existing LBFS[28–31],which is used for simulation of inviscid flows.The first one is its ability to simulate viscous flows by including evaluation of viscous flux.The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux,which takes a value close to zero in the boundary layer and one around the strong shock wave.Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.
文摘This paper at first shows the details of finite volume-based lattice Boltzmann method(FV-LBM)for simulation of compressible flows with shock waves.In the FV-LBM,the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model,while the tangential flux is calculated using the same way as used in the conventional Euler solvers.The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM.The platform is formed from the conservation forms of moments.Under the platform,both the equilibrium distribution functions and lattice velocities can be determined,and therefore,non-free parameter model can be developed.The paper particularly presents three typical non-free parameter models,D1Q3,D1Q4 and D1Q5.The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems.Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number.From the results,it seems that D1Q4 model could be the best choice for the FVLBM simulation of hypersonic flows.
基金Project supported by the 1804 Fund grant of Ohio University and the US Department of Energy (DE-AC02-05CH11231)
文摘We have studied the optical and magnetic properties of ytterbium implanted GaN epilayer grown on (0001) sapphire by metalorganic chemical vapor by deposition (MOCVD). Samples were implanted at room temperature with Yb ions at dose 4 1015 cm-2 and energy of 150 keV. The implanted samples were annealed at 1000 C in N2 at atmospheric pressure to recover implantation damages. The photoluminescence (PL), PL excitation (PLE), and PL kinetics have been studied with continuous and pulse photo-excitations in 360-1100 nm spectral range at different temperatures. The characteristic Yb3+ ion emission spectra were observed in the spectral range between 970-1050 nm. Theoretical fittings of the experimental PL temperature and PL kinetics data suggest that Yb3+ ions are involved in at least two major luminescence centers. The PLE spectra indicate that excitation of the Yb3+ ion occurs via electron-hole pair generation and complex processes. Magnetization versus magnetic field curves shows an enhancement of magnetic order for Yb-implanted samples in 5 K to 300 K temperature range. The Yb-implanted GaN sample showing weak ferromagnetic behavior was compared with the ferromagnetic in situ doped GaYbN material.
文摘A boundary condition-enforced immersed boundary-lattice Boltzmannmethod (IB-LBM) for the simulation of particulate flows is presented in this paper. Ingeneral, the immersed boundary method (IBM) utilizes a discrete set of force densityto represent the effect of boundary. In the conventional IB-LBM, such force density ispre-determined, which cannot guarantee exact satisfaction of non-slip boundary condition. In this study, the force density is transferred to the unknown velocity correctionwhich is determined by enforcing the non-slip boundary condition. For the particulateflows, accurate calculation of hydrodynamic force exerted on the boundary of particlesis of great importance as it controls the motion of particles. The capability of presentmethod for particulate flows is depicted by simulating migration of one particle in asimple shear flow and sedimentation of one particle in a box and two particles in achannel. The expected phenomena and numerical results are achieved. In addition,particle suspension in a 2D symmetric stenotic artery is also simulated.
基金The simulations were performed on the Qilin-2 supercomputer at Zhejiang University.This work was supported by the Science Challenge Project(No.TZ2016005)the National Natural Science Foundation of China(Grant Nos.119210067,11605269,11721091,11775144)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404).
文摘We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,respectively.Distinct effects of the target materials are found on the total charge,cutoff energy,and beam spot of protons in the experiments,and these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties.It is found that with a laser intensity of 8×10^(19) W/cm^(2),target normal sheath acceleration is the dominant mechanism for both types of target.For a plastic target,the higher charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams,and the larger divergence angle of the protons is due to the deflection of hot electrons during transport in the targets.We also find that the energy loss of hot electrons in targets of different thickness has a significant effect on the proton cutoff energy.The consistent results obtained here further narrow the gap between simulations and experiments.
基金ONR Composites for Marine Structures Program(grant N00014-01-1-0205,Program Manager Dr.Y.D.S.Rajapakse)the National Basic Research Program of China(973 Program,2007CB936803)+1 种基金the NSFCMinistry of Education of China
文摘The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability.
文摘Objective:To better evaluate tertiary Gleason pattern reporting and to evaluate the impact of tertiary Gleason pattern 5(TP5)on prostate cancer pathological features and biochemical recurrence at our large single institution.Methods:We retrospectively reviewed 1962 patients who underwent radical prostatectomy(RP)for prostate cancer;TP5 was reported in 159 cases(8.1%).Men with Gleason score(GS)7 and GS 8 disease were divided into subgroups with and without TP5,and histopathological features were compared.Multivariate analyses were conducted to assess the impact on TP5 on biochemical-free survival(BFS).Results:Tumors possessing GS 3+4 with TP5 were more likely to exhibit extraprostatic extension(EPE)and had a larger tumor diameter(TD)than GS 3+4 alone.GS 3+4 with TP5 was also associated with positive surgical margins(SM),seminal vesicle involvement(SVI),and higher pre-operative prostate-specific antigen(PSA)values,but without statistical significance.GS 4+3 with TP5 more commonly presented with EPE,positive SM,SVI,and greater TD and pre-operative PSA level than GS 4+3 alone.In multivariate analysis,Gleason score,EPE,and TP5 were overall independent risk factors for PSA recurrence in this cohort.Additionally,GS 4+3 with TP5 was associated with shorter time to recurrence versus GS 4+3 alone.Conclusion:Our results emphasize the importance of TP5 and suggest that criteria for tertiary pattern reporting in prostate cancer should be standardized.Further studies are needed to evaluate the role of tertiary patterns in prognostic models.
基金financially supported by the Department of Science and Technology, India under Water Technology Initiative schemethe Department of Science & Technology (DST) for India-Taiwan joint projectthe Ministry of Human Resource Development (MHRD), New Delhi for the junior research fellowship position
文摘CuO nanomaterials were synthesized by a simple solution phase method using cetyltrimethylammonium bromide(CTAB) as a surfactant and their photocatalytic property was determined towards the visible-light assisted degradation of Reactive Black-5 dye. A detailed mechanism for the formation of CuO nanostructures has been proposed.The effect of various experimental parameters such as catalyst amount, dye concentration,p H and oxidizing agent on the dye degradation efficiency was studied. About 87% dye was degraded at p H 2 in the presence of CuO nanosheets under visible light. The enhanced photocatalytic activity of CuO nanosheets can be ascribed to good crystallinity, grain size,surface morphology and a strong absorption in the visible region. CuO is found to be a promising catalyst for industrial waste water treatment.
文摘Closed and basic closed C*D-filters are used in a process similar to Wallman method for compactifications of the topological spaces Y, of which, there is a subset of C*(Y) containing a non-constant function, where C*(Y) is the set of bounded real continuous functions on Y. An arbitrary Hausdorff compactification (Z,h) of a Tychonoff space X can be obtained by using basic closed C*D-filters from in a similar way, where C(Z) is the set of real continuous functions on Z.
文摘We studied the multilayering effects of InGaAs quantum dots(QDs) on GaAs(731), a surface lying inside of the stereographic triangle. The surfaces after stacking 16 InGaAs layers were characterized with highly non-uniformity of QD spatial distribution. The bunched step regions driven by strain accumulation are decorated by QDs, therefore GaAs(731) becomes a good candidate substrate for the growth of QD clusters. The unique optical properties of the QD clusters are revealed by photoluminescence measurements. By adjusting the coverage of InGaAs, a bamboo-like nanostructured surface was observed and the quantum dots aligned up in clusters to separate the "bamboo" into sections.
基金Supported by the China-Russia Joint Research Center on Space Weather,Chinese Academy of Sciences
文摘Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer,γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.