The objective of this study was to quantify multimodal connectivity of HSR stations and its impact on ridership in four countries: France, Spain, Japan and China. In this study, multimodal connectivity is measured by ...The objective of this study was to quantify multimodal connectivity of HSR stations and its impact on ridership in four countries: France, Spain, Japan and China. In this study, multimodal connectivity is measured by the number of different modes of transportation connected to HSR stations, the number of installed arrival and departure facilities for each mode, the transfer time from connecting modes to boarding platforms at HSR stations, and the arrival time intervals of public transportation modes. Data were collected from HSR systems of these four countries. The relationship between ridership and the characteristics of multimodal connectivity was identified using regression models developed in this study. All the connectivity variables considered in this study influence ridership in these four countries in different ways. On the whole, bus, subway, and regional railroad services influence ridership significantly. For instance, the more bus services connected to the station, the higher the ridership. This trend is apparent in three of the four countries, France being the exception. Also, subway, light rail, and traditional rail are modes of high-capacity transportation. Their connection to HSR stations always implies high ridership for high-speed rail. The number of facilities also shows significant impacts on HSR ridership. For instance, the more bus and subway stops, and the more bicycle parking and taxi stands, the higher the ridership. Transfer time also has a significant influence.展开更多
文摘The objective of this study was to quantify multimodal connectivity of HSR stations and its impact on ridership in four countries: France, Spain, Japan and China. In this study, multimodal connectivity is measured by the number of different modes of transportation connected to HSR stations, the number of installed arrival and departure facilities for each mode, the transfer time from connecting modes to boarding platforms at HSR stations, and the arrival time intervals of public transportation modes. Data were collected from HSR systems of these four countries. The relationship between ridership and the characteristics of multimodal connectivity was identified using regression models developed in this study. All the connectivity variables considered in this study influence ridership in these four countries in different ways. On the whole, bus, subway, and regional railroad services influence ridership significantly. For instance, the more bus services connected to the station, the higher the ridership. This trend is apparent in three of the four countries, France being the exception. Also, subway, light rail, and traditional rail are modes of high-capacity transportation. Their connection to HSR stations always implies high ridership for high-speed rail. The number of facilities also shows significant impacts on HSR ridership. For instance, the more bus and subway stops, and the more bicycle parking and taxi stands, the higher the ridership. Transfer time also has a significant influence.