Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky inte...Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.展开更多
Computer vision(CV)algorithms have been extensively used for a myriad of applications nowadays.As the multimedia data are generally well-formatted and regular,it is beneficial to leverage the massive parallel processi...Computer vision(CV)algorithms have been extensively used for a myriad of applications nowadays.As the multimedia data are generally well-formatted and regular,it is beneficial to leverage the massive parallel processing power of the underlying platform to improve the performances of CV algorithms.Single Instruction Multiple Data(SIMD)instructions,capable of conducting the same operation on multiple data items in a single instruction,are extensively employed to improve the efficiency of CV algorithms.In this paper,we evaluate the power and effectiveness of RISC-V vector extension(RV-V)on typical CV algorithms,such as Gray Scale,Mean Filter,and Edge Detection.By our examinations,we show that compared with the baseline OpenCV implementation using scalar instructions,the equivalent implementations using the RV-V(version 0.8)can reduce the instruction count of the same CV algorithm up to 24x,when processing the same input images.Whereas,the actual performances improvement measured by the cycle counts is highly related with the specific implementation of the underlying RV-V co-processor.In our evaluation,by using the vector co-processor(with eight execution lanes)of Xuantie C906,vector-version CV algorithms averagely exhibit up to 2.98x performances speedups compared with their scalar counterparts.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62104185)the Fundamental Research Funds for the Central Universities,China(Grant No.JB211103)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars,China(Grant No.61925404)the Wuhu and Xidian University Special Fund for Industry–University-Research Cooperation,China(Grant No.XWYCXY-012021010)。
文摘Dynamic characteristics of the single-crystal Ga N-passivated lateral AlGaN/GaN Schottky barrier diodes(SBDs)treated with proton irradiation are investigated.Radiation-induced changes including idealized Schottky interface and slightly degraded on-resistance(RON)are observed under 10-Me V proton irradiation at a fluence of 10^(14)cm^(-2).Because of the existing negative polarization charges induced at GaN/AlGaN interface,the dynamic ON-resistance(RON,dyn)shows negligible degradation after a 1000-s-long forward current stress of 50 mA to devices with and without being irradiated by protons.Furthermore,the normalized RON,dynincreases by only 14%that of the initial case after a 100-s-long bias of-600 V has been applied to the irradiated devices.The high-performance lateral AlGaN/GaN SBDs with tungsten as anode metal and in-situ single-crystal GaN as passivation layer show a great potential application in the harsh radiation environment of space.
基金supported by the National Natural Science Foundation of China under Grant No.61972444。
文摘Computer vision(CV)algorithms have been extensively used for a myriad of applications nowadays.As the multimedia data are generally well-formatted and regular,it is beneficial to leverage the massive parallel processing power of the underlying platform to improve the performances of CV algorithms.Single Instruction Multiple Data(SIMD)instructions,capable of conducting the same operation on multiple data items in a single instruction,are extensively employed to improve the efficiency of CV algorithms.In this paper,we evaluate the power and effectiveness of RISC-V vector extension(RV-V)on typical CV algorithms,such as Gray Scale,Mean Filter,and Edge Detection.By our examinations,we show that compared with the baseline OpenCV implementation using scalar instructions,the equivalent implementations using the RV-V(version 0.8)can reduce the instruction count of the same CV algorithm up to 24x,when processing the same input images.Whereas,the actual performances improvement measured by the cycle counts is highly related with the specific implementation of the underlying RV-V co-processor.In our evaluation,by using the vector co-processor(with eight execution lanes)of Xuantie C906,vector-version CV algorithms averagely exhibit up to 2.98x performances speedups compared with their scalar counterparts.