Reproductive biotechnologies offer us greater possibilities to improve animal genetics. However, the success of these depends on different factors such as the proper selection of the donor female. For this reason, end...Reproductive biotechnologies offer us greater possibilities to improve animal genetics. However, the success of these depends on different factors such as the proper selection of the donor female. For this reason, endocrine markers have been used to evaluate the ovarian reserve, which allow a successful selection of donors. Recent research has shown, among other things, that concentrations greater than 0.130 ng/mL of anti-Mullerian hormone (also known as Muller-inhibiting substance, which is a member of the transforming growth factor beta superfamily of growth and differentiation factors) are related to donors of more than fifteen transferable embryos. Therefore, this review describes studies showing that the measurement of anti-Müllerian hormone concentrations, before superovulation programs, reduces the costs per embryo produced.展开更多
文摘Reproductive biotechnologies offer us greater possibilities to improve animal genetics. However, the success of these depends on different factors such as the proper selection of the donor female. For this reason, endocrine markers have been used to evaluate the ovarian reserve, which allow a successful selection of donors. Recent research has shown, among other things, that concentrations greater than 0.130 ng/mL of anti-Mullerian hormone (also known as Muller-inhibiting substance, which is a member of the transforming growth factor beta superfamily of growth and differentiation factors) are related to donors of more than fifteen transferable embryos. Therefore, this review describes studies showing that the measurement of anti-Müllerian hormone concentrations, before superovulation programs, reduces the costs per embryo produced.