Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, can...Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, cannot resolve the effects of topography and land use as they impact the local temperature and precipitation that are keys to climate impacts. We developed a robust dynamical downscaling strategy that used the WRF regional climate model to downscale at 4 - 12 km resolution GCM results. Model verification demonstrates the need for such resolution of topography in order to properly simulate temperatures. Precipitation is more difficult to evaluate, being highly variable in time and space. Overall, a 36 km resolution is inadequate;12 km appears reasonable, especially in regions of low topography, but the 4 km resolution provides the best match with observations. This represents a tradeoff between model resolution and the computational effort needed to make simulations. A key goal is to provide climate change specialists in each country with the information they need to evaluate possible future climate change impacts.展开更多
文摘Mesoamerica and the Caribbean are low-latitude regions at risk for the effects of climate change. Global climate models provide large-scale assessment of climate drivers, but, at a horizontal resolution of 100 km, cannot resolve the effects of topography and land use as they impact the local temperature and precipitation that are keys to climate impacts. We developed a robust dynamical downscaling strategy that used the WRF regional climate model to downscale at 4 - 12 km resolution GCM results. Model verification demonstrates the need for such resolution of topography in order to properly simulate temperatures. Precipitation is more difficult to evaluate, being highly variable in time and space. Overall, a 36 km resolution is inadequate;12 km appears reasonable, especially in regions of low topography, but the 4 km resolution provides the best match with observations. This represents a tradeoff between model resolution and the computational effort needed to make simulations. A key goal is to provide climate change specialists in each country with the information they need to evaluate possible future climate change impacts.