Modification signs in extreme weather events may be directly related to alterations in the thermodynamic panorama of the atmosphere that need to be better understood. This study aimed to make a first interconnection b...Modification signs in extreme weather events may be directly related to alterations in the thermodynamic panorama of the atmosphere that need to be better understood. This study aimed to make a first interconnection between climate extremes and thermodynamic patterns in the city of Rio de Janeiro. Maximum and minimum air temperature and precipitation extreme indices from two surface meteorological stations (ABOV and STCZ) and instability indices based on temperature and humidity from radiosonde observations (SBGL) were employed to investigate changes in the periods 1964-1980 (P1), 1981-2000 (P2), and 2001-2020 (P3). Statistical tests were adopted to determine the significance and magnitude of trends. The frequency of warm (cold) days and warm (cold) nights are increasing (decreasing) in the city. Cold (Warm) extremes are changing with greater magnitude in ABOV (STCZ) than in STCZ (ABOV). In ABOV, there is a significant increase of +84 mm/decade in the rainfall volume associated with severe precipitation (above the 95<sup>th</sup> percentile) and most extreme precipitation indices show an increase in frequency and intensity. In STCZ, there is a decrease in extreme precipitation until the 1990s, and from there, an increase, showing a wetter climate in the most recent years. It is also verified in SBGL that there is a statistically significant increase (decrease) in air temperature of +0.1°C/decade (-0.2°C/decade) and relative humidity of +1.2%/decade (-3%/decade) at the low and middle (high) troposphere. There is a visible rising trend in most of the evaluated instability indices over the last few decades. The increasing trends of some extreme precipitation indices are probably allied to the precipitable water increasing trend of +1.2 mm/decade.展开更多
文摘Modification signs in extreme weather events may be directly related to alterations in the thermodynamic panorama of the atmosphere that need to be better understood. This study aimed to make a first interconnection between climate extremes and thermodynamic patterns in the city of Rio de Janeiro. Maximum and minimum air temperature and precipitation extreme indices from two surface meteorological stations (ABOV and STCZ) and instability indices based on temperature and humidity from radiosonde observations (SBGL) were employed to investigate changes in the periods 1964-1980 (P1), 1981-2000 (P2), and 2001-2020 (P3). Statistical tests were adopted to determine the significance and magnitude of trends. The frequency of warm (cold) days and warm (cold) nights are increasing (decreasing) in the city. Cold (Warm) extremes are changing with greater magnitude in ABOV (STCZ) than in STCZ (ABOV). In ABOV, there is a significant increase of +84 mm/decade in the rainfall volume associated with severe precipitation (above the 95<sup>th</sup> percentile) and most extreme precipitation indices show an increase in frequency and intensity. In STCZ, there is a decrease in extreme precipitation until the 1990s, and from there, an increase, showing a wetter climate in the most recent years. It is also verified in SBGL that there is a statistically significant increase (decrease) in air temperature of +0.1°C/decade (-0.2°C/decade) and relative humidity of +1.2%/decade (-3%/decade) at the low and middle (high) troposphere. There is a visible rising trend in most of the evaluated instability indices over the last few decades. The increasing trends of some extreme precipitation indices are probably allied to the precipitable water increasing trend of +1.2 mm/decade.