Runoff is an important component of the water balance of agricultural fields. Accurate measurement or estimation of agricultural runoff is important due to its potential impact on water quantity and quality. Since run...Runoff is an important component of the water balance of agricultural fields. Accurate measurement or estimation of agricultural runoff is important due to its potential impact on water quantity and quality. Since runoff from agricultural fields is sporadic and is often associated with irrigation and/or intense rainfall events, manually measuring runoff and collecting water samples for water quality analysis during runoff events is inconvenient and impractical. In the fall of 2017, a field site was selected at the Clemson University Edisto Research and Education Center with the objective of developing, constructing, and testing an Internet of things (IoT) flume system to automatically measure runoff and collect water samples. In 2018, an automatic IoT system was developed and installed consisting of six stainless steel H-flumes (22.9-cm), which measured runoff from six adjacent research plots under two different cultural regimes (cover crop and no cover crop). An electronic eTape sensor was installed in the flume and used to measure the water level or the flume’s head. Open-source electronic (Arduino) devices and a cloud-based platform were then used to create a wireless sensor network and IoT system to automatically record the amount of runoff (hydrograph) coming from each section, collect water samples and transmit the data to a Cloud server (Thingspeak.com) where the data can be viewed remotely in real-time. The IoT flume system has been operating successfully and reliably for more than two years.展开更多
Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decisi...Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.展开更多
In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil...In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil organic matter, controlling weeds, and helping conserve soil water and nutrients. Although expecting these benefits seems reasonable, it is challenging to know how much of these benefits to expect under specific situations. The potential effect of cover crops on soil water conservation is especially significant because of the documented impact of soil water on crop yield, especially for dryland cropping systems. Some researchers have found that planting a cover crop tended to increase soil water, while others have reported the opposite effect. Information on the impact of cover crops on soil water in cotton (<em>Gossypium hirsutum</em> L.) production systems in South Carolina is currently lacking. Therefore, the objective of this study was to quantify the effect of cover crops on soil water and cotton yield. A field experiment was conducted in South Carolina during winter, spring, and summer of 2015, with three cover crop treatments. The treatments included: 1) rye (<em>Secale cereale </em>L.), planted alone;2) a mix of six cover crop species;and 3) a control treatment with no-cover. The cover crop was established in the winter, terminated in the spring, and cotton was grown during the summer. Soil water was measured at different depths using capacitance probes and a neutron probe. Our results showed no significant differences in soil water and cotton yield among the cover crop treatments. These results suggest that under the humid conditions of this study, any short-term effect of the cover crop on soil water was masked by timely rain.展开更多
文摘Runoff is an important component of the water balance of agricultural fields. Accurate measurement or estimation of agricultural runoff is important due to its potential impact on water quantity and quality. Since runoff from agricultural fields is sporadic and is often associated with irrigation and/or intense rainfall events, manually measuring runoff and collecting water samples for water quality analysis during runoff events is inconvenient and impractical. In the fall of 2017, a field site was selected at the Clemson University Edisto Research and Education Center with the objective of developing, constructing, and testing an Internet of things (IoT) flume system to automatically measure runoff and collect water samples. In 2018, an automatic IoT system was developed and installed consisting of six stainless steel H-flumes (22.9-cm), which measured runoff from six adjacent research plots under two different cultural regimes (cover crop and no cover crop). An electronic eTape sensor was installed in the flume and used to measure the water level or the flume’s head. Open-source electronic (Arduino) devices and a cloud-based platform were then used to create a wireless sensor network and IoT system to automatically record the amount of runoff (hydrograph) coming from each section, collect water samples and transmit the data to a Cloud server (Thingspeak.com) where the data can be viewed remotely in real-time. The IoT flume system has been operating successfully and reliably for more than two years.
文摘Active soil moisture monitoring is an important consideration in irrigation water management. A permanent and readily accessible record of changes in soil moisture can be used to improve future water management decision-making. Similarly, accessing stored soil moisture data in near-real-time is also essential for making timely farming and management decisions, such as where, when, and how much irrigation to apply. Access to reliable communication systems and delivery of real-time data can be affected by its availability near production fields. Therefore, soil moisture monitoring systems with real-time data functionality that can meet the needs of farmers at an affordable cost are currently needed. The objective of the study was to develop and fieldtest affordable cell-phone-based Internet of things (IoT) systems for soil moisture monitoring. These IoT systems were designed using low-cost hardware components and open-source software to transmit soil moisture data from the Watermark 200SS or ECH<sub>2</sub>O EC-5 sensors. These monitoring systems utilized either Particle Electron or Particle Proton Arduino-compatible devices for data communication. The IoT soil moisture monitoring systems have been deployed and operated successfully over the last three years in South Carolina.
文摘In recent years, the use of cover crops is becoming a popular technology among growers in many regions of the United States, which is expected to deliver various benefits such as improving soil health, increasing soil organic matter, controlling weeds, and helping conserve soil water and nutrients. Although expecting these benefits seems reasonable, it is challenging to know how much of these benefits to expect under specific situations. The potential effect of cover crops on soil water conservation is especially significant because of the documented impact of soil water on crop yield, especially for dryland cropping systems. Some researchers have found that planting a cover crop tended to increase soil water, while others have reported the opposite effect. Information on the impact of cover crops on soil water in cotton (<em>Gossypium hirsutum</em> L.) production systems in South Carolina is currently lacking. Therefore, the objective of this study was to quantify the effect of cover crops on soil water and cotton yield. A field experiment was conducted in South Carolina during winter, spring, and summer of 2015, with three cover crop treatments. The treatments included: 1) rye (<em>Secale cereale </em>L.), planted alone;2) a mix of six cover crop species;and 3) a control treatment with no-cover. The cover crop was established in the winter, terminated in the spring, and cotton was grown during the summer. Soil water was measured at different depths using capacitance probes and a neutron probe. Our results showed no significant differences in soil water and cotton yield among the cover crop treatments. These results suggest that under the humid conditions of this study, any short-term effect of the cover crop on soil water was masked by timely rain.