Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, a...Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, and improve crop productivity. Integrating this treatment has the potential to improve soil physical and biological properties by increasing soil carbon, C. However, rapid decomposition and mineralization of PL, particularly in the hot and humid southeastern U.S., resulted in losing C and reduced its effect on soil health. Biochar and lignite have been proposed to stabilize and mitigate C loss through application of fresh manure. However, their combined effects with PL on C sequestration and soil health components are limited. A field experiment was conducted on Leeper silty clay loam soil from 2017 to 2020 to evaluate the combined effect on soil properties when applying biochar and lignite with PL to cotton (Gossypium hirsutum L.). The experimental design was a randomized complete block involving nine treatments replicated three times. Treatments included PL and inorganic nitrogen, N, fertilizer with or without biochar and lignite, and an unfertilized control. Application rates were 6.7 Mgkg⋅ha−1</sup> for PL, 6.7 Mgkg⋅ha−1</sup></sup> for biochar and lignite and 134 kg⋅ha−1</sup><sup></sup> for inorganic N fertilizer. Integration of PL and inorganic fertilizer with biochar and lignite, resulted in greater soil infiltration, aggregate stability, plant available water, reduced bulk density and penetration resistance as compared to the sole applications of PL and inorganic fertilizer.展开更多
文摘Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, and improve crop productivity. Integrating this treatment has the potential to improve soil physical and biological properties by increasing soil carbon, C. However, rapid decomposition and mineralization of PL, particularly in the hot and humid southeastern U.S., resulted in losing C and reduced its effect on soil health. Biochar and lignite have been proposed to stabilize and mitigate C loss through application of fresh manure. However, their combined effects with PL on C sequestration and soil health components are limited. A field experiment was conducted on Leeper silty clay loam soil from 2017 to 2020 to evaluate the combined effect on soil properties when applying biochar and lignite with PL to cotton (Gossypium hirsutum L.). The experimental design was a randomized complete block involving nine treatments replicated three times. Treatments included PL and inorganic nitrogen, N, fertilizer with or without biochar and lignite, and an unfertilized control. Application rates were 6.7 Mgkg⋅ha−1</sup> for PL, 6.7 Mgkg⋅ha−1</sup></sup> for biochar and lignite and 134 kg⋅ha−1</sup><sup></sup> for inorganic N fertilizer. Integration of PL and inorganic fertilizer with biochar and lignite, resulted in greater soil infiltration, aggregate stability, plant available water, reduced bulk density and penetration resistance as compared to the sole applications of PL and inorganic fertilizer.