电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸...电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸附能力、具有高灵敏度和准确性的电化学一氧化氮传感器.其对一氧化氮的物理和化学吸附能力分别来自于电极的高比表面积和丰富的羧基官能团.此外,柔软的电极可以与脑组织的力学性能相匹配,实现了一个高度适应的电极/组织界面.由此设计的颅内一氧化氮传感器表现出迄今为止所报道文献中最高的灵敏度,为3245 pA nmol^(-1)L,检测限为0.1 nmol L^(-1).电极在植入后未观察到显著的炎症反应以及过量的一氧化氮表达,提高了检测的准确性.该传感器成功捕捉了大脑中的一氧化氮波动,并实现了对多个脑区的同时检测,促进了对大脑中一氧化氮生理病理作用的研究.展开更多
Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combi...Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.展开更多
This study aims to explore the effect of project-based teaching methods on improving students’ abilities in normal universities. This study delves into the practice teaching system based on ability training implement...This study aims to explore the effect of project-based teaching methods on improving students’ abilities in normal universities. This study delves into the practice teaching system based on ability training implemented in normal universities, examining the application of this teaching model in teacher education and the potential challenges it may encounter. Our case study reveals that the Project-Based Learning (PBL) approach can effectively transform students from passive recipients of knowledge into active problem solvers, thereby enhancing their critical thinking, problem-solving, teamwork, and communication skills. However, challenges do exist, including ensuring active participation from all students, providing equal opportunities for each student to develop and showcase their abilities, and completing complex projects within a limited timeframe. Therefore, teachers may need to adjust their teaching strategies, and schools need to provide more resources and support. These adjustments can help the practice teaching system based on ability training better serve teacher education and offer students a higher-quality educational experience.展开更多
The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
Light-emitting diodes(LEDs)are popular for lighting and displays due to their energy efficiency and long lifespan.With the development of high-efficiency LEDs,new technologies such as the Internet of Things have emerg...Light-emitting diodes(LEDs)are popular for lighting and displays due to their energy efficiency and long lifespan.With the development of high-efficiency LEDs,new technologies such as the Internet of Things have emerged.However,scientists are still working to improve the color purity and expand the color gamut of LEDs to meet the demands of a wide range of applications.展开更多
基金financially supported by the National Natural Science Foundation of China (22175086, 22005137, 22205098, and 82201992)the Natural Science Foundation of Jiangsu Province (BK20200321 and BK20210681)+5 种基金the Postdoctoral Research Foundation of Jiangsu Province (2021K007A)China Postdoctoral Science Foundation (2021M700067)the National Postdoctoral Program for Innovative Talents (BX20200161)the Program for Innovative Talents and Entrepreneurs in Jiangsu (JSSCTD202138)the Fundamental Research Funds for the Central Universities (021314380234)the Natural Science Foundation of Nanjing University of Chinese Medicine (XPT82201992)。
文摘电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸附能力、具有高灵敏度和准确性的电化学一氧化氮传感器.其对一氧化氮的物理和化学吸附能力分别来自于电极的高比表面积和丰富的羧基官能团.此外,柔软的电极可以与脑组织的力学性能相匹配,实现了一个高度适应的电极/组织界面.由此设计的颅内一氧化氮传感器表现出迄今为止所报道文献中最高的灵敏度,为3245 pA nmol^(-1)L,检测限为0.1 nmol L^(-1).电极在植入后未观察到显著的炎症反应以及过量的一氧化氮表达,提高了检测的准确性.该传感器成功捕捉了大脑中的一氧化氮波动,并实现了对多个脑区的同时检测,促进了对大脑中一氧化氮生理病理作用的研究.
基金Project supported by the National Natural Science Foundation of China (Grant No.62371388)the Key Research and Development Projects in Shaanxi Province,China (Grant No.2023-YBGY-044)。
文摘Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.
文摘This study aims to explore the effect of project-based teaching methods on improving students’ abilities in normal universities. This study delves into the practice teaching system based on ability training implemented in normal universities, examining the application of this teaching model in teacher education and the potential challenges it may encounter. Our case study reveals that the Project-Based Learning (PBL) approach can effectively transform students from passive recipients of knowledge into active problem solvers, thereby enhancing their critical thinking, problem-solving, teamwork, and communication skills. However, challenges do exist, including ensuring active participation from all students, providing equal opportunities for each student to develop and showcase their abilities, and completing complex projects within a limited timeframe. Therefore, teachers may need to adjust their teaching strategies, and schools need to provide more resources and support. These adjustments can help the practice teaching system based on ability training better serve teacher education and offer students a higher-quality educational experience.
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
基金supported by the Beijing Municipal Natural Science Foundation(JQ20003)the National Natural Science Foundation of China(22275021)the Fok Ying-Tong Education Foundation(171008)。
文摘Light-emitting diodes(LEDs)are popular for lighting and displays due to their energy efficiency and long lifespan.With the development of high-efficiency LEDs,new technologies such as the Internet of Things have emerged.However,scientists are still working to improve the color purity and expand the color gamut of LEDs to meet the demands of a wide range of applications.
文摘在10 L的A^2/O反应器中构建微生物燃料电池(MFC)系统,以厌氧段作为阳极室去除有机物,缺氧段作为阴极室去除硝酸盐.结果发现,30 d左右可以达到最大输出电流.系统启动后进入稳定期对水力停留时间(HRT)进行优化,结果表明,当HRT=16 h时可以获得最佳出水效果,此时MFC的出水COD、总氮浓度分别比对照A^2/O反应器低14.6%和10.1%,在100Ω外阻下的输出功率密度为612 m W·m^(-3);当HRT=12 h时,产电效果最好,最大输出功率密度可以达到808 m W·m^(-3).
基金supported by the National Basic Research Program of China (2018YFA0702001)the National Natural Science Foundation of China (22225901,21975237 and 51702312)+5 种基金the Fundamental Research Funds for the Central Universities (WK2340000101)the University of Science and Technology of China Research Funds of the Double First-Class Initiative (YD2340002007 and YD9990002017)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2022007)the China Postdoctoral Science Foundation (2023M733371,2022M723032,and 2023T160617)the Natural Science Foundation Youth Project of Anhui Province (2308085QB37)the China National Postdoctoral Program for Innovative Talents (BX2023341)。