期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fuzzy-Rough Feature Selection for Mammogram Classification
1
作者 r.roselin K.Thangavel C.Velayutham 《Journal of Electronic Science and Technology》 CAS 2011年第2期124-132,共9页
Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original mean... Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original meaning of the features after reduction. The benefits of FS are twofold:it considerably decreases the running time of the induction algorithm,and increases the accuracy of the resulting model. This paper analyses the FS process in mammogram classification using fuzzy logic and rough set theory. Rough set and fuzzy logic based Quickreduct algorithms are applied for the FS from the features extracted using gray level co-occurence matrix(GLCM) constructed over the mammogram region. The predictive accuracy of the features is tested using NaiveBayes,Ripper,C4.5,and ant-miner algorithms. The results show that the ant-miner produces significant result comparing with others and the number of features selected using fuzzy-rough quick reduct algorithm is minimum,too. 展开更多
关键词 Ant-miner fuzzy logic fuzzy-rough gray level co-occurence matrix MAMMOGRAMS rough set
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部