期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
野火蔓延的数学模型 被引量:7
1
作者 r.o.weber 唐世敏 《力学与实践》 CSCD 北大核心 1992年第2期1-12,共12页
野火通过燃床蔓延是自然界的一个复杂现象.本文综述了为认识这一现象所作的研究工作,包括分析各种理化机制及通过基本物理规律构造数学模型。现有的数学模型可分为统计模型、经验模型和物理模型三类.本文着重以统一的观点评述了近五十... 野火通过燃床蔓延是自然界的一个复杂现象.本文综述了为认识这一现象所作的研究工作,包括分析各种理化机制及通过基本物理规律构造数学模型。现有的数学模型可分为统计模型、经验模型和物理模型三类.本文着重以统一的观点评述了近五十年来所建立的各种物理模型,并讨论了考虑湍流热对流和化学反应动力学的新方向. 展开更多
关键词 野火蔓延 数学模型 热力平衡
下载PDF
NUMERICAL SOLUTION OF A NONLINEAR REACTION-DIFFUSION EQUATION
2
作者 唐世敏 秦素娣 r.o.weber 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第8期751-758,共8页
A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exac... A nonlinear reaction-diffusion equation is studied numerically by a Petrov-Galerkin finite element method, which has been proved to be 2nd-order accurate in time and 4th-order in space. The comparison between the exact and numerical solutions of progressive waves shows that this numerical scheme is quite accurate, stable andefflcient. It is also shown that any local disturbance will spread, have a full growth and finally form two progressive waves propagating in both directions. The shape and the speed of the long term progressive waves are determined by the system itself, and do not depend on the details of the initial values. 展开更多
关键词 reaction-diffusion equation Petrov-Galerkin finite element method progressive wave
下载PDF
ON THE BOUNDED AND UNBOUNDED SOLUTIONS OF ONE DIMENSIONAL NONLINEAR REACTION-DIFFUSION PROBLEM
3
作者 GEWEIGAo r.o.weber 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1995年第2期245-254,共10页
The existence of bounded and unbounded solutions to nonlinear reactinn-diffusion problemut = △Φ(u) + F(u,x,t) with initial or initial-boundal conditinns is discussed when u=u(x, t), x ∈ R. Simple criteria are given.
关键词 Reaction-Diffusion equation Bounded solution Cauchy problem.1991 MR Subject Classification 35K57.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部