期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Surface Modification of AH36 Steel Using ENi-P-nano TiO2 Composite Coatings Through ANN-Based Modelling and Prediction
1
作者 r anthoni sagaya selvan Dinesh G.Thakur +1 位作者 M.Seeman Mahesh Naik 《Journal of Marine Science and Application》 CSCD 2022年第3期193-203,共11页
This study aims to analyse and forecast the significance of input process parameters to obtain a better ENi-P-TiO_(2) coated surface using artificial neural networks(ANN).By varying the four process parameters with th... This study aims to analyse and forecast the significance of input process parameters to obtain a better ENi-P-TiO_(2) coated surface using artificial neural networks(ANN).By varying the four process parameters with the Taguchi L9 design,fortyfive numbers of AH36 steel specimens are coated with ENi-P-TiO_(2) composites,and their microhardness values are determined.The ANN model was formulated using the input and output data obtained from the 45 specimens.The optimal design was developed based on mean squared error(MSE)and R2 values.The experimentally measured values were compared with their predicted values to determine the ANN model’s predictability.The efficiency of the ANN model is evaluated with an R2 value of 0.959 and an MSE value of 34.5634.The authors have concluded that the developed model is suitable for designing and predicting ENi-P-TiO_(2) composite coatings to avoid extensive experimentation with economic production.Scanning Electron Microscope(SEM)and X-ray diffraction analysis(XRD)are also utilised to compare the base metal and optimal coated surface. 展开更多
关键词 AH36 steel ENi-P-nanoTiO2 composite coatings Artificial neural networks Taguchi DOE MICROHARDNESS Mean squared error
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部