The normal development and maintenance of central neural functions are highly correlated with the amount of docosahexaenoic acid(DHA;ω-3 fatty acid)accumulated in the brain.DHA incorporated at the sn-2 position of li...The normal development and maintenance of central neural functions are highly correlated with the amount of docosahexaenoic acid(DHA;ω-3 fatty acid)accumulated in the brain.DHA incorporated at the sn-2 position of lipids is well absorbed by intestinal mucosa and utilized efficiently in vivo.However,modern consumers have a reduced direct intake of DHA and increased intake of saturated fats or ω-6 fatty acid oils,resulting in behavioral and neurophysiological deficits.To provide an understanding of the integrated beneficial effects of DHA on the human brain,this review introduces the positional difference(sn-2 and sn-1,3 positions)of DHA on a glycerol skeleton in natural fats and oils,and further discusses the possible functional mechanism regarding DHA supplementation and the gut-brain axis.The multiple bidirectional routes in this axis offer a novel insight into the interaction between DHA supplementation,the gut microbiota,and brain health.To achieve high sn-2 DHA in diets,it is suggested that sn-2 DHA lipids be enzymatically produced in more efficient and economical ways by improving the specific activities of lipases and optimizing the purification procedures.These types of diets will benefit individuals with strong needs for sn-2 ω-3 lipids such as infants,children,and pregnant and lactating women.展开更多
Human milk fat(HMF)is an important source of nutrients and energy for infants.Triacylglycerols(TAGs)account for about 98%of HMF and have a unique molecular structure.HMF is highly enriched in palmitic acid(PA)at the s...Human milk fat(HMF)is an important source of nutrients and energy for infants.Triacylglycerols(TAGs)account for about 98%of HMF and have a unique molecular structure.HMF is highly enriched in palmitic acid(PA)at the sn-2 position of the glycerol backbone(more than 70%)and in unsaturated fatty acids at the sn-1,3 position.The specific TAG structure in HMF plays a valuable function in infant growth.Sn-2 palmitate(mainly 1,3-dioleoyl-2-palmitoyl-glycerol)is one of the structured TAGs that is commonly supplemented into infant formula in order to enable it to present a similar structure to HMF.In this review,the development of the lipase-catalyzed synthesis of sn-2 palmitate over the last 25 years are summarized,with a focus on reaction schemes in a laboratory setting.Particular attention is also paid to the commercialized sn-1,3 regioselective lipases that are used in structured TAGs synthesis,to general methods of TAG analysis,and to successfully developed sn-2 palmitate products on the market.Prospects for the lipase-catalyzed synthesis of sn-2 palmitate are discussed.展开更多
The flavor is a decisive sensory characteristic that determines the popularity of French fries(FFs).During high-oleic rapeseed oil(RO)frying,the flavor development of FFs showed three noticeable stages including break...The flavor is a decisive sensory characteristic that determines the popularity of French fries(FFs).During high-oleic rapeseed oil(RO)frying,the flavor development of FFs showed three noticeable stages including break-in(3.5%-7.5%of total polar compounds(TPC)),optimum(7.5%-22.18%of TPC),and degrading stages(above 22.18%of TPC).Further,in order to distinguish the key aroma compounds in each stage,the FFs prepared in RO at TPC of 3.5%(FF4),14.5%(FF15),and 26.96%(FF27)and their relevant oils(RO4,RO15,RO27)were selected for sensory-directed analysis.The results revealed that the FF4 had low contents of(E,E)-2,4-decadienal(deep-fried odor)which also caused lower sensory score in FF4 sample.The higher contents of(E,E)-2,4-decadienal in FF15 induced its higher deep-fried odor.The FF27 had higher hexanoic acid(sweaty odor),heptanoic acid,nonanoic acid,benzene acetaldehyde(stale odor),and trans-4,5-epoxy-(E)-2-decenal(metallic odor)compared with FF4 and FF15,thus leading to the undesirable flavor of FF27.Moreover,the decrease of 2,5-dimethylpyrazine and 2-ethyl-6-methyl-pyrazine in FF27 induced the lower roasty flavor,which may also lead to the decline of the sensory score.Similarly,the higher contents of(E)-2-undecenal,hexanoic acid,heptanoic acid,and nonanoic acid in RO27 lead to increase its rancid score and thus lower the sensory score.展开更多
Dear Editor,Hepatoblastoma(HB)is a predominant hepatic neoplasm that develops in children from 0 to 4 years of age at the rate of 2.16 per 1,000,000.It originates from abnormal differentiation of hepatocyte precursors...Dear Editor,Hepatoblastoma(HB)is a predominant hepatic neoplasm that develops in children from 0 to 4 years of age at the rate of 2.16 per 1,000,000.It originates from abnormal differentiation of hepatocyte precursors(hepatoblasts)during embryogenesis(Sumazin et al.,2017).Approximately 20%of children with HB have metastasis in lung at diagnosis,which indicates poor prognosis(Angelico et al.,2019).While surgery in combination of chemotherapy and/or metastasectomy is the most popular therapy,relapse happens in a significant portion of HB patients(Zhang et al.,2021).Therefore,novel and less aggressive therapies targeting the pathogenesis of HB should be explored to prolong patients’s disease-free survival as well as to improve their quality of life.展开更多
We systematically evaluated fatty acids and triacylglycerol composition,as well as tocopherol,phytosterol,and phenolics,in walnut oil and compared the cholesterol-lowering effects of oil processed with different metho...We systematically evaluated fatty acids and triacylglycerol composition,as well as tocopherol,phytosterol,and phenolics,in walnut oil and compared the cholesterol-lowering effects of oil processed with different methods(cold pressing,roast-pressing,hexane extraction,subcritical butane extraction,and supercritical CO_(2) extraction).The different methods did not affect the lipid composition of walnut oil.The tocopherol(41.11 mg/100 g)and total phenolic content(TPC,4.26 mg/100 g)of roast-pressed walnut oil and the phytosterol contents of subcritical butane-extracted walnut oil(106.51 mg/100 g)were higher than those of other tested oils.Walnut oil significantly decreased cholesterol synthesis by downregulating the expression of HMGCR,SREBP-2,and CYP51 genes,and increased cholesterol efflux by upregulating the expression of ABCG1,thus significantly reducing total cholesterol and triacylglycerol.Phytosterols and TPC in walnut oil were responsible for lowering cholesterol;the optimal concentration of phytosterols was 10μg/mL,and that of TPC was 12.5×10^(-3)μg/mL.Through process optimization,a new processing method for walnut oil based on biological evaluation was preliminarily established.展开更多
The interaction mechanism of mucin and α-amylase with virgin olive oil (VOO) polyphenols (oleuropein (OL),tyrosol (TY),hydroxytyrosol (HT)) was analyzed by fluorescence,ultraviolet (UV) absorption,attenuated total re...The interaction mechanism of mucin and α-amylase with virgin olive oil (VOO) polyphenols (oleuropein (OL),tyrosol (TY),hydroxytyrosol (HT)) was analyzed by fluorescence,ultraviolet (UV) absorption,attenuated total reflection Fourier transform infrared (ATR-FTIR),circular dichroic (CD) spectroscopy and molecular docking.A total of 17 polyphenols have been identified in the selected VOO,and the TY,HT and OL were the main compounds.The quenching mechanism between mucin/α-amylase and three VOO polyphenols was static,mainly through van der Waals forces and hydrogen bonds.The results of UV absorption,ATR-FTIR,and CD spectroscopy revealed that the conformation of mucin changed after combining with the three polyphenols,while that of the α-amylase changed little.Molecular docking predicted the interaction sites of the three polyphenols with human salivary mucin and α-amylase.The present study could provide the theoretical foundation for further research on the interaction between human salivary protein and phenolic compounds in VOO.展开更多
基金supported by the Chinese Scholarship Council(201706790068)the Free Exploration Founded Project of the State Key Laboratory of Food Science and Technology at Jiangnan University(SKLF-ZZA-201705)supported in part by Food Science Research,University of Georgia.
文摘The normal development and maintenance of central neural functions are highly correlated with the amount of docosahexaenoic acid(DHA;ω-3 fatty acid)accumulated in the brain.DHA incorporated at the sn-2 position of lipids is well absorbed by intestinal mucosa and utilized efficiently in vivo.However,modern consumers have a reduced direct intake of DHA and increased intake of saturated fats or ω-6 fatty acid oils,resulting in behavioral and neurophysiological deficits.To provide an understanding of the integrated beneficial effects of DHA on the human brain,this review introduces the positional difference(sn-2 and sn-1,3 positions)of DHA on a glycerol skeleton in natural fats and oils,and further discusses the possible functional mechanism regarding DHA supplementation and the gut-brain axis.The multiple bidirectional routes in this axis offer a novel insight into the interaction between DHA supplementation,the gut microbiota,and brain health.To achieve high sn-2 DHA in diets,it is suggested that sn-2 DHA lipids be enzymatically produced in more efficient and economical ways by improving the specific activities of lipases and optimizing the purification procedures.These types of diets will benefit individuals with strong needs for sn-2 ω-3 lipids such as infants,children,and pregnant and lactating women.
基金supported by a National Natural Science Foundation of China grant(31701558)the Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)+1 种基金the Overseas Expertise Introduction Project for Discipline Innovation(111 Project,B90719028)the national first-class discipline program of Food Science and Technology(JUFSTR20180202).
文摘Human milk fat(HMF)is an important source of nutrients and energy for infants.Triacylglycerols(TAGs)account for about 98%of HMF and have a unique molecular structure.HMF is highly enriched in palmitic acid(PA)at the sn-2 position of the glycerol backbone(more than 70%)and in unsaturated fatty acids at the sn-1,3 position.The specific TAG structure in HMF plays a valuable function in infant growth.Sn-2 palmitate(mainly 1,3-dioleoyl-2-palmitoyl-glycerol)is one of the structured TAGs that is commonly supplemented into infant formula in order to enable it to present a similar structure to HMF.In this review,the development of the lipase-catalyzed synthesis of sn-2 palmitate over the last 25 years are summarized,with a focus on reaction schemes in a laboratory setting.Particular attention is also paid to the commercialized sn-1,3 regioselective lipases that are used in structured TAGs synthesis,to general methods of TAG analysis,and to successfully developed sn-2 palmitate products on the market.Prospects for the lipase-catalyzed synthesis of sn-2 palmitate are discussed.
基金financially supported by the National First-Class Discipline Program of Food Science and Technology (JUFSTR20180202)Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1852)+1 种基金National Natural Science Foundation of China (31901728)Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z297)
文摘The flavor is a decisive sensory characteristic that determines the popularity of French fries(FFs).During high-oleic rapeseed oil(RO)frying,the flavor development of FFs showed three noticeable stages including break-in(3.5%-7.5%of total polar compounds(TPC)),optimum(7.5%-22.18%of TPC),and degrading stages(above 22.18%of TPC).Further,in order to distinguish the key aroma compounds in each stage,the FFs prepared in RO at TPC of 3.5%(FF4),14.5%(FF15),and 26.96%(FF27)and their relevant oils(RO4,RO15,RO27)were selected for sensory-directed analysis.The results revealed that the FF4 had low contents of(E,E)-2,4-decadienal(deep-fried odor)which also caused lower sensory score in FF4 sample.The higher contents of(E,E)-2,4-decadienal in FF15 induced its higher deep-fried odor.The FF27 had higher hexanoic acid(sweaty odor),heptanoic acid,nonanoic acid,benzene acetaldehyde(stale odor),and trans-4,5-epoxy-(E)-2-decenal(metallic odor)compared with FF4 and FF15,thus leading to the undesirable flavor of FF27.Moreover,the decrease of 2,5-dimethylpyrazine and 2-ethyl-6-methyl-pyrazine in FF27 induced the lower roasty flavor,which may also lead to the decline of the sensory score.Similarly,the higher contents of(E)-2-undecenal,hexanoic acid,heptanoic acid,and nonanoic acid in RO27 lead to increase its rancid score and thus lower the sensory score.
文摘Dear Editor,Hepatoblastoma(HB)is a predominant hepatic neoplasm that develops in children from 0 to 4 years of age at the rate of 2.16 per 1,000,000.It originates from abnormal differentiation of hepatocyte precursors(hepatoblasts)during embryogenesis(Sumazin et al.,2017).Approximately 20%of children with HB have metastasis in lung at diagnosis,which indicates poor prognosis(Angelico et al.,2019).While surgery in combination of chemotherapy and/or metastasectomy is the most popular therapy,relapse happens in a significant portion of HB patients(Zhang et al.,2021).Therefore,novel and less aggressive therapies targeting the pathogenesis of HB should be explored to prolong patients’s disease-free survival as well as to improve their quality of life.
基金supported by the National Natural Science Foundation of China Youth Science Foundation Project(grant numbers 32001735).
文摘We systematically evaluated fatty acids and triacylglycerol composition,as well as tocopherol,phytosterol,and phenolics,in walnut oil and compared the cholesterol-lowering effects of oil processed with different methods(cold pressing,roast-pressing,hexane extraction,subcritical butane extraction,and supercritical CO_(2) extraction).The different methods did not affect the lipid composition of walnut oil.The tocopherol(41.11 mg/100 g)and total phenolic content(TPC,4.26 mg/100 g)of roast-pressed walnut oil and the phytosterol contents of subcritical butane-extracted walnut oil(106.51 mg/100 g)were higher than those of other tested oils.Walnut oil significantly decreased cholesterol synthesis by downregulating the expression of HMGCR,SREBP-2,and CYP51 genes,and increased cholesterol efflux by upregulating the expression of ABCG1,thus significantly reducing total cholesterol and triacylglycerol.Phytosterols and TPC in walnut oil were responsible for lowering cholesterol;the optimal concentration of phytosterols was 10μg/mL,and that of TPC was 12.5×10^(-3)μg/mL.Through process optimization,a new processing method for walnut oil based on biological evaluation was preliminarily established.
基金supported by the National Natural Science Foundation of China(Grant No.31901728)the Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z297).
文摘The interaction mechanism of mucin and α-amylase with virgin olive oil (VOO) polyphenols (oleuropein (OL),tyrosol (TY),hydroxytyrosol (HT)) was analyzed by fluorescence,ultraviolet (UV) absorption,attenuated total reflection Fourier transform infrared (ATR-FTIR),circular dichroic (CD) spectroscopy and molecular docking.A total of 17 polyphenols have been identified in the selected VOO,and the TY,HT and OL were the main compounds.The quenching mechanism between mucin/α-amylase and three VOO polyphenols was static,mainly through van der Waals forces and hydrogen bonds.The results of UV absorption,ATR-FTIR,and CD spectroscopy revealed that the conformation of mucin changed after combining with the three polyphenols,while that of the α-amylase changed little.Molecular docking predicted the interaction sites of the three polyphenols with human salivary mucin and α-amylase.The present study could provide the theoretical foundation for further research on the interaction between human salivary protein and phenolic compounds in VOO.