期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
数字孪生增强的复合材料质量预测
被引量:
1
1
作者
王雨澄
陶飞
+2 位作者
左颖
张萌
戚庆林
《Engineering》
SCIE
EI
CAS
CSCD
2023年第3期23-33,共11页
复合材料以其优异的性能被广泛应用于许多领域。复合材料的质量缺陷会导致其构件的性能下降,成为潜在的事故隐患。当前国内外研究者通常采用实验或仿真的方法对复合材料的质量进行预测。然而,由于固化环境的不确定性和动态、静态特征考...
复合材料以其优异的性能被广泛应用于许多领域。复合材料的质量缺陷会导致其构件的性能下降,成为潜在的事故隐患。当前国内外研究者通常采用实验或仿真的方法对复合材料的质量进行预测。然而,由于固化环境的不确定性和动态、静态特征考虑不全面,因此难以准确预测复合材料的质量。为了解决这一问题,本文首先建立了复合材料的数字孪生(DT)模型,然后通过实现静态热压罐DT虚拟模型与可变复合材料DT虚拟模型的耦合,完成复合材料固化过程数字孪生模型的构建。基于该固化过程模型,生成模拟数据来增加动态特征,从而提高质量预测的准确性。最后基于获取的数据,使用极限学习机(ELM)构建复合材料质量预测模型,并通过结果分析验证了所提方法的有效性。
展开更多
关键词
Digital
twin
Quality
prediction
COMPOSITES
Coupling
models
下载PDF
职称材料
题名
数字孪生增强的复合材料质量预测
被引量:
1
1
作者
王雨澄
陶飞
左颖
张萌
戚庆林
机构
School of Automation Science and Electrical Engineering
Research Institute for Frontier Science
Department of Automation
School of Mechanical Engineering and Automation
出处
《Engineering》
SCIE
EI
CAS
CSCD
2023年第3期23-33,共11页
基金
the National Natural Science Foundation of China(52120105008 and 52005024).
文摘
复合材料以其优异的性能被广泛应用于许多领域。复合材料的质量缺陷会导致其构件的性能下降,成为潜在的事故隐患。当前国内外研究者通常采用实验或仿真的方法对复合材料的质量进行预测。然而,由于固化环境的不确定性和动态、静态特征考虑不全面,因此难以准确预测复合材料的质量。为了解决这一问题,本文首先建立了复合材料的数字孪生(DT)模型,然后通过实现静态热压罐DT虚拟模型与可变复合材料DT虚拟模型的耦合,完成复合材料固化过程数字孪生模型的构建。基于该固化过程模型,生成模拟数据来增加动态特征,从而提高质量预测的准确性。最后基于获取的数据,使用极限学习机(ELM)构建复合材料质量预测模型,并通过结果分析验证了所提方法的有效性。
关键词
Digital
twin
Quality
prediction
COMPOSITES
Coupling
models
分类号
TB33 [一般工业技术—材料科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
数字孪生增强的复合材料质量预测
王雨澄
陶飞
左颖
张萌
戚庆林
《Engineering》
SCIE
EI
CAS
CSCD
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部