Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improvi...Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improving the acceptance capacity of the power grid.Carbon cloth electrode(CC)is the main site where the electrochemical reaction occurs,which always suffers from the disadvantages of poor electrochemical reactivity.A new N-B codoped co-regulation Ti composite CC electrode(T-B-CC)is firstly generated and applied to ICRFB,where the REDOX reaction can be promoted significantly owing to the plentiful active sites generated on the modified electrode.As contrasted with ICRFB with normal CC electrode,after 50 battery charge/discharge cycles,the discharge capacity(1,990.3 mAh vs 1,155.8 mAh)and electrolyte utilization(61.88%vs 35.94%)of ICRFB with CC electrode(T-B-CC)are significantly improved.Furthermore,the energy efficiency(EE)is maintained at about 82.7%under 50 cycles,which is 9.3%higher than that of the pristine electrically assembled cells.The comodulation of heteroatom doping and the introduction of Ti catalysts is a simple and easy method to improve the dynamics of the Cr^(3+)/Cr^(2+)and Fe^(3+)/Fe^(2+)reactions,enhancing the performance of ICRFBs.展开更多
基金National Nature Science Foudation of China(No.22308378)Science Foundation of China University of Petroleum(2462023XKBH005,ZX20230078).
文摘Iron-chromium redox flow battery(ICRFB)is an electrochemical energy storage technology that plays a vital role in dealing with the problems of discontinuity and instability of massive new energy generation and improving the acceptance capacity of the power grid.Carbon cloth electrode(CC)is the main site where the electrochemical reaction occurs,which always suffers from the disadvantages of poor electrochemical reactivity.A new N-B codoped co-regulation Ti composite CC electrode(T-B-CC)is firstly generated and applied to ICRFB,where the REDOX reaction can be promoted significantly owing to the plentiful active sites generated on the modified electrode.As contrasted with ICRFB with normal CC electrode,after 50 battery charge/discharge cycles,the discharge capacity(1,990.3 mAh vs 1,155.8 mAh)and electrolyte utilization(61.88%vs 35.94%)of ICRFB with CC electrode(T-B-CC)are significantly improved.Furthermore,the energy efficiency(EE)is maintained at about 82.7%under 50 cycles,which is 9.3%higher than that of the pristine electrically assembled cells.The comodulation of heteroatom doping and the introduction of Ti catalysts is a simple and easy method to improve the dynamics of the Cr^(3+)/Cr^(2+)and Fe^(3+)/Fe^(2+)reactions,enhancing the performance of ICRFBs.