Applying Krasnosel'skii fixed point theorem of cone expansion-compression type, the existence of positive radial solutions for some second-order nonlinear elliptic equations in annular domains, subject to Dirichle...Applying Krasnosel'skii fixed point theorem of cone expansion-compression type, the existence of positive radial solutions for some second-order nonlinear elliptic equations in annular domains, subject to Dirichlet boundary conditions, is investigated. By considering the properties of nonlinear term on boundary closed intervals, several existence results of positive radial solutions are established. The main results are independent of superlinear growth and sublinear growth of nonlinear term. If nonlinear term has extreme values and satisfies suitable conditions, the main results are very effective.展开更多
The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an ...The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an existence theorem of positive solution is obtained, corresponding iterative process and convergence rate are given. This iterative process starts off with zero function, hence the process is simple, feasible and effective.展开更多
文摘Applying Krasnosel'skii fixed point theorem of cone expansion-compression type, the existence of positive radial solutions for some second-order nonlinear elliptic equations in annular domains, subject to Dirichlet boundary conditions, is investigated. By considering the properties of nonlinear term on boundary closed intervals, several existence results of positive radial solutions are established. The main results are independent of superlinear growth and sublinear growth of nonlinear term. If nonlinear term has extreme values and satisfies suitable conditions, the main results are very effective.
文摘The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an existence theorem of positive solution is obtained, corresponding iterative process and convergence rate are given. This iterative process starts off with zero function, hence the process is simple, feasible and effective.