The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typ...The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.展开更多
基金financially supported by the High-level Talents’Discipline Construction Fund of Shandong University(31370089963078)the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(20190037 and 20210028)+3 种基金China Postdoctoral Science Foundation(2019M661276 and 2021T140150)Guangdong Basic and Applied Basic Research Foundation(2019A1515110756)the National Natural Science Foundation of China(52002094)the Open Fund of Guangdong Provincial Key laboratory of Advanced Energy Storage Materials(AESM202107)。
文摘The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.