期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
二维材料最新研究进展 被引量:19
1
作者 常诚 陈伟 +64 位作者 陈也 陈永华 陈雨 丁峰 樊春海 范红金 范战西 龚成 宫勇吉 何其远 洪勋 胡晟 胡伟达 黄维 黄元 季威 李德慧 李连忠 李强 林立 凌崇益 刘鸣华 刘楠 刘庄 Kian Ping Loh 马建民 缪峰 彭海琳 邵明飞 宋礼 苏邵 孙硕 谭超良 唐智勇 王定胜 王欢 王金兰 王欣 王欣然 Andrew T.S.Wee 魏钟鸣 吴宇恩 吴忠帅 熊杰 熊启华 徐伟高 尹鹏 曾海波 曾志远 翟天佑 张晗 张辉 张其春 张铁锐 张翔 赵立东 赵美廷 赵伟杰 赵运宣 周凯歌 周兴 周喻 朱宏伟 张华 刘忠范 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第12期1-151,共151页
Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since ... Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief backgroundintroduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials(PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field. 展开更多
关键词 Two-dimensional materials Transition metal dichalcogenides Phase engineering of nanomaterials ELECTRONICS OPTOELECTRONICS CATALYSIS Energy storage and conversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部