Usually,a multilens optical system is composed of multiple undetectable sublenses.Wavefront of a multilens optical system cannot be measured when classical transmitted phase measuring deflectometry[PMD] is used.In thi...Usually,a multilens optical system is composed of multiple undetectable sublenses.Wavefront of a multilens optical system cannot be measured when classical transmitted phase measuring deflectometry[PMD] is used.In this study,a wavefront measuring method for an optical system with multiple optics is presented based on PMD.A paraxial plane is used to represent the test multilens optical system.We introduce the calibration strategy and mathematical deduction of gradient equations.Systematic errors are suppressed with an N-rotation test.Simulations have been performed to demonstrate our method.The results showing the use of our method in multilens optical systems,such as the collimator and single-lens reflex camera lenses show that the measurement accuracy is comparable with those of interferometric tests.展开更多
基金supported by the City Foundation of Nanchong(Nos.SXQHJH026 and 2021SXHZ041)。
文摘Usually,a multilens optical system is composed of multiple undetectable sublenses.Wavefront of a multilens optical system cannot be measured when classical transmitted phase measuring deflectometry[PMD] is used.In this study,a wavefront measuring method for an optical system with multiple optics is presented based on PMD.A paraxial plane is used to represent the test multilens optical system.We introduce the calibration strategy and mathematical deduction of gradient equations.Systematic errors are suppressed with an N-rotation test.Simulations have been performed to demonstrate our method.The results showing the use of our method in multilens optical systems,such as the collimator and single-lens reflex camera lenses show that the measurement accuracy is comparable with those of interferometric tests.