Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wo...Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.展开更多
Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materi...Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials. In addition, biomedical materials have claimed attention because of the increased interest in tissue engineering materials for wound care and regenerative medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this work, we present the extracellular matrix (ECM) using the bacterial cellulose (Nanoskin<sup>®</sup>) which regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Bacterial cellulose fermentation process is modified before the bacteria are inoculated for mimicking ECM to cells support and built new local material for wound healing. Chemical groups influences and thermal behavior in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Besides, In vivo analysis was evaluated with clinical study at Sharjah Kuwait Hospital.展开更多
<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-fam...<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> It depends </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> cancer stage. Chemotherapy, immunotherapy and anti-metabolic drugs have been used in order to kill cancer cells and prevent immune system weakly and metastasis. However, such drugs can damage healthy cells too. Natural ways to cancer treatments may help whole body to cancer cells. In this work, it was taking off cancer nodule to skin cancer by surgery and we treat the nodule as wound, using Nanoskin</span><sup><span style="font-family:Verdana;"><sup></sup></span><span style="font-family:Verdana;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;">®</sup></span></span></sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> advance cell therapy (ACT), natural extra cellular matrix which releases nutrients to the skin cancer. Our result shows that the cancer nodule disappear</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in few weeks in skin, because of natural membrane treatment. In addition, we obtained complete wound healing due anticancer nutrients (beta-glucan) delivery to skin.</span>展开更多
Epidermolysis Bullosa (EB) is a group of rare genetic skin conditions, which is characterised by extremely fragile skin and recurrent blister formation, resulting from minor mechanical friction or trauma. Sufferers of...Epidermolysis Bullosa (EB) is a group of rare genetic skin conditions, which is characterised by extremely fragile skin and recurrent blister formation, resulting from minor mechanical friction or trauma. Sufferers of EB have compared the sores to third-degree burns. Stevens-Johnson syndrome is a rare but very serious skin problem, which causes the appearance of reddish lesions throughout the body and other changes, such as difficulty in breathing and fever, which can endanger the life of the affected person. The aim of this study was to show efficacy of a NANOSKIN ACT, AND NANOSKIN ACT SOFT wound dressing on the wound care management in patients with EB AND Stevens-Johnson syndrome (SJS).展开更多
Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical...Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical devices. In fact, the structure of Nanoskin materials can be adapted over length scales ranging from nano to macro by controlling the bio-fabrication process. The present paper describes Natural Nanoskin Advanced cell therapy (ACT) and Nanoskin ACT Soft production for wound care applications. ACT is produced from the bio-nanotechnology process. ACT is a highly hydrated pellicle with shaped fibers less than 2 nm wide. Nanoskin ACT Soft, like a paste, is designed to fill irregularities or recesses in the wound bed, and to absorb excess exudate from lesions by prolonging the used dressing's residence time and reducing the frequency of change.展开更多
Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established a...Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established as a new biomaterial and can be used in several medicine areas, especially for medical devices mainly in dental and orthopedics applications. In addition, biomaterials have rise because of the increased interest in tissue engineering and regeneratine medicine materials for wound care and skin cancer treatment. The BC process production can be changed by different fermentation process. It has particular properties that make it an ideal candidate as a medical material: high mechanical properties, biocompatibility to the host tissue, and production in various shapes and sizes. This review describes a behavior investigation of this biomaterial in human medicine with bacterial cellulose, skin cancer, covid-19 and 3-D print for medical area.展开更多
It’s well known that the cancer cell has tendency to grow fast. Chemotherapy drugs have been used in order to kill cancer growing cells and take immune system weakly. However, side effect can damage these healthy cel...It’s well known that the cancer cell has tendency to grow fast. Chemotherapy drugs have been used in order to kill cancer growing cells and take immune system weakly. However, side effect can damage these healthy cells. Moreover, it is not natural treatment. Natural alternative cancer treatments may be able to help and open new way for cancer treatment. In this work, we transfer cancer nodule to wound and we treat the nodule as wound, using Nanoskin<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>®</sup></span> advance cell therapy (ACT), natural extra cellular matrix which releases oxygen to the cancer tissue. Our result shows that the cancer nodule becomes like chronic wound opened and then disappeared. In addition, we obtained complete healing wound.展开更多
文摘Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.
文摘Natural extracellular matrices (ECMs) perform the tasks necessary for tissue formation, maintenance, regulation and function, providing a powerful means of controlling the biological performance of regenerative materials. In addition, biomedical materials have claimed attention because of the increased interest in tissue engineering materials for wound care and regenerative medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization, cell support and Natural Extracellular Matrix (ECM) Scaffolds. In this work, we present the extracellular matrix (ECM) using the bacterial cellulose (Nanoskin<sup>®</sup>) which regulates cell behavior by influencing cell proliferation, survival, shape, migration and differentiation. Bacterial cellulose fermentation process is modified before the bacteria are inoculated for mimicking ECM to cells support and built new local material for wound healing. Chemical groups influences and thermal behavior in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), respectively. Besides, In vivo analysis was evaluated with clinical study at Sharjah Kuwait Hospital.
文摘<span style="font-family:Verdana;">Cancer cells can be proliferating in a few months and years</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> It depends </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> cancer stage. Chemotherapy, immunotherapy and anti-metabolic drugs have been used in order to kill cancer cells and prevent immune system weakly and metastasis. However, such drugs can damage healthy cells too. Natural ways to cancer treatments may help whole body to cancer cells. In this work, it was taking off cancer nodule to skin cancer by surgery and we treat the nodule as wound, using Nanoskin</span><sup><span style="font-family:Verdana;"><sup></sup></span><span style="font-family:Verdana;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;">®</sup></span></span></sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> advance cell therapy (ACT), natural extra cellular matrix which releases nutrients to the skin cancer. Our result shows that the cancer nodule disappear</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in few weeks in skin, because of natural membrane treatment. In addition, we obtained complete wound healing due anticancer nutrients (beta-glucan) delivery to skin.</span>
文摘Epidermolysis Bullosa (EB) is a group of rare genetic skin conditions, which is characterised by extremely fragile skin and recurrent blister formation, resulting from minor mechanical friction or trauma. Sufferers of EB have compared the sores to third-degree burns. Stevens-Johnson syndrome is a rare but very serious skin problem, which causes the appearance of reddish lesions throughout the body and other changes, such as difficulty in breathing and fever, which can endanger the life of the affected person. The aim of this study was to show efficacy of a NANOSKIN ACT, AND NANOSKIN ACT SOFT wound dressing on the wound care management in patients with EB AND Stevens-Johnson syndrome (SJS).
文摘Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical devices. In fact, the structure of Nanoskin materials can be adapted over length scales ranging from nano to macro by controlling the bio-fabrication process. The present paper describes Natural Nanoskin Advanced cell therapy (ACT) and Nanoskin ACT Soft production for wound care applications. ACT is produced from the bio-nanotechnology process. ACT is a highly hydrated pellicle with shaped fibers less than 2 nm wide. Nanoskin ACT Soft, like a paste, is designed to fill irregularities or recesses in the wound bed, and to absorb excess exudate from lesions by prolonging the used dressing's residence time and reducing the frequency of change.
文摘Bacterial cellulose (BC)-Nanoskin<span style="white-space:nowrap;"><sup><span style="white-space:nowrap;">®</span></sup></span> has become established as a new biomaterial and can be used in several medicine areas, especially for medical devices mainly in dental and orthopedics applications. In addition, biomaterials have rise because of the increased interest in tissue engineering and regeneratine medicine materials for wound care and skin cancer treatment. The BC process production can be changed by different fermentation process. It has particular properties that make it an ideal candidate as a medical material: high mechanical properties, biocompatibility to the host tissue, and production in various shapes and sizes. This review describes a behavior investigation of this biomaterial in human medicine with bacterial cellulose, skin cancer, covid-19 and 3-D print for medical area.
文摘It’s well known that the cancer cell has tendency to grow fast. Chemotherapy drugs have been used in order to kill cancer growing cells and take immune system weakly. However, side effect can damage these healthy cells. Moreover, it is not natural treatment. Natural alternative cancer treatments may be able to help and open new way for cancer treatment. In this work, we transfer cancer nodule to wound and we treat the nodule as wound, using Nanoskin<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>®</sup></span> advance cell therapy (ACT), natural extra cellular matrix which releases oxygen to the cancer tissue. Our result shows that the cancer nodule becomes like chronic wound opened and then disappeared. In addition, we obtained complete healing wound.