<b>Introduction:</b> Skin aging is the result of many cellular dysfunctions over time particularly the fibroblasts and the keratinocytes. These dysfunctions could be decelerated by the preventive effects o...<b>Introduction:</b> Skin aging is the result of many cellular dysfunctions over time particularly the fibroblasts and the keratinocytes. These dysfunctions could be decelerated by the preventive effects of some skin treatments such as Intradermal injections. NCTF 135HA has a polycomponent formulation designed to improve the efficacy of non-cross linked hyaluronic acid (as a micro-filler) on fibroblasts function. Although NCTF 135HA has been used by aesthetic practitioners since 20 years, we have analyzed all <i>in </i><i>vitro</i>, <i>ex vivo</i> and <i>in vivo</i> studies during past 10 years in order to summarized its anti-aging effect. <b>Methods</b><b>:</b> In these series of studies, the known effects of HA have been evaluated with this boosted formula. Collagen I synthesis, antiglycation effect and contractile forces developed by fibroblasts were studied. Fibroblasts and keratinocytes proliferations were evaluated in monolayer cells culture. The filling effect thanks to NCTF 135HA injection was <i>ex vivo </i>performed by fringe projection and the protective effect of NCTF 135HA against solar irradiation was performed <i>ex vivo</i> to study proliferation rate, elastin and collagen expression. Two clinical trials were performed on women to evaluate the anti-aging effect of NCTF 135HA injection. Hydration, firmness, radiance, wrinkles size, pore size, thickness and density of the dermis were analyzed. <b>Results</b><b>:</b> Collagen I, anti-AGE products, cell proliferation and contractile forces were significantly increased with NCTF 135HA in culture medium. <i>Ex vivo</i> studies showed that NCTF 135HA increased, cells proliferation rate, elastin and collagen production. In addition, the filling effect of the NCTF 135HA is significantly superior to placebo. The first clinical trial shows that NCTF 135HA injection significantly increased tonicity, hydration and radiance of the skin and significantly decreased wrinkle score. The second clinical trial demonstrated that NCTF 135HA injection significantly incre展开更多
<strong>Background:</strong> Titanium dioxide and zinc oxide were often criticized over the last decade because of their supposed noxious effects on human health. Moreover, these compounds which are freque...<strong>Background:</strong> Titanium dioxide and zinc oxide were often criticized over the last decade because of their supposed noxious effects on human health. Moreover, these compounds which are frequently introduced in sunscreen products as UV filter, are sometimes associated with poor UVA protection factors. So, in order to clarify the real efficacy and safety status of these products, we provide here some bibliographic and experimental data regarding 1) their “real” protective effect against UVA rays and 2) their real harmful effects on human skin notably by studying their capability to penetrate through the human cutaneous tissue. <strong>Materials and Methods:</strong> We studied here 4 sunscreen products containing titanium dioxide and zinc oxide for 3 of them. First, because the UVA-PF values obtained for these compounds by using the “classical” <em>in vitro</em> ISO 24443 procedure seem to be significantly different from to those obtained by using the <em>in vivo</em> method ISO 24442, we chose to develop a new <em>in vitro</em> methodology in order to more precisely define the UVA-PF of titanium and zinc oxides. This new methodology was then used to lead UVA-PF studies with the 4 selected solar products. We also provide here an evaluation of the toxicological effects of titanium and zinc oxides on human skin based on the SCCS reports and analysis of recent and relevant bibliographic studies. Moreover, as the harmful effects of this type of products are closely linked to their ability to penetrate cutaneous tissue, we tested 7 sunscreen products to precise the skin penetration profiles of titanium dioxide and zinc oxide by using human skin explants mounted on Franz cells. <strong>Results:</strong> We here demonstrated that our new <em>in vitro</em> methodology gave some UVA-PF values very close to those obtained with <em>in vivo</em> methods and we took advantage of it to define more realistic UVA-PF for titanium dioxide and zinc oxide. Additionally, we here evaluated the human skin permeation展开更多
文摘<b>Introduction:</b> Skin aging is the result of many cellular dysfunctions over time particularly the fibroblasts and the keratinocytes. These dysfunctions could be decelerated by the preventive effects of some skin treatments such as Intradermal injections. NCTF 135HA has a polycomponent formulation designed to improve the efficacy of non-cross linked hyaluronic acid (as a micro-filler) on fibroblasts function. Although NCTF 135HA has been used by aesthetic practitioners since 20 years, we have analyzed all <i>in </i><i>vitro</i>, <i>ex vivo</i> and <i>in vivo</i> studies during past 10 years in order to summarized its anti-aging effect. <b>Methods</b><b>:</b> In these series of studies, the known effects of HA have been evaluated with this boosted formula. Collagen I synthesis, antiglycation effect and contractile forces developed by fibroblasts were studied. Fibroblasts and keratinocytes proliferations were evaluated in monolayer cells culture. The filling effect thanks to NCTF 135HA injection was <i>ex vivo </i>performed by fringe projection and the protective effect of NCTF 135HA against solar irradiation was performed <i>ex vivo</i> to study proliferation rate, elastin and collagen expression. Two clinical trials were performed on women to evaluate the anti-aging effect of NCTF 135HA injection. Hydration, firmness, radiance, wrinkles size, pore size, thickness and density of the dermis were analyzed. <b>Results</b><b>:</b> Collagen I, anti-AGE products, cell proliferation and contractile forces were significantly increased with NCTF 135HA in culture medium. <i>Ex vivo</i> studies showed that NCTF 135HA increased, cells proliferation rate, elastin and collagen production. In addition, the filling effect of the NCTF 135HA is significantly superior to placebo. The first clinical trial shows that NCTF 135HA injection significantly increased tonicity, hydration and radiance of the skin and significantly decreased wrinkle score. The second clinical trial demonstrated that NCTF 135HA injection significantly incre
文摘<strong>Background:</strong> Titanium dioxide and zinc oxide were often criticized over the last decade because of their supposed noxious effects on human health. Moreover, these compounds which are frequently introduced in sunscreen products as UV filter, are sometimes associated with poor UVA protection factors. So, in order to clarify the real efficacy and safety status of these products, we provide here some bibliographic and experimental data regarding 1) their “real” protective effect against UVA rays and 2) their real harmful effects on human skin notably by studying their capability to penetrate through the human cutaneous tissue. <strong>Materials and Methods:</strong> We studied here 4 sunscreen products containing titanium dioxide and zinc oxide for 3 of them. First, because the UVA-PF values obtained for these compounds by using the “classical” <em>in vitro</em> ISO 24443 procedure seem to be significantly different from to those obtained by using the <em>in vivo</em> method ISO 24442, we chose to develop a new <em>in vitro</em> methodology in order to more precisely define the UVA-PF of titanium and zinc oxides. This new methodology was then used to lead UVA-PF studies with the 4 selected solar products. We also provide here an evaluation of the toxicological effects of titanium and zinc oxides on human skin based on the SCCS reports and analysis of recent and relevant bibliographic studies. Moreover, as the harmful effects of this type of products are closely linked to their ability to penetrate cutaneous tissue, we tested 7 sunscreen products to precise the skin penetration profiles of titanium dioxide and zinc oxide by using human skin explants mounted on Franz cells. <strong>Results:</strong> We here demonstrated that our new <em>in vitro</em> methodology gave some UVA-PF values very close to those obtained with <em>in vivo</em> methods and we took advantage of it to define more realistic UVA-PF for titanium dioxide and zinc oxide. Additionally, we here evaluated the human skin permeation