In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean ...In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and borehol展开更多
This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Env...This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Environmental Protection Agency (USEPA). Forty-two samples were collected from wells and boreholes and analyzed for nitrate, fluoride and other water quality parameters. Results of the study indicate that fluoride and nitrate concentrations vary respectively from 0.13 to 9.41 mg·L−1 and from 0.13 to 432.24 mg·L−1 with respective median values of 2.65 and 13.85. About 69% of groundwater samples exceed the allowable limit (1.5 mg·L−1) of fluoride for drinking water. Spatial distribution of fluoride shows high concentrations in certain localities with values ranging from 6.74 mg·L−1 to 9.41 mg·L−1. The spatial distribution of nitrate indicates that the majority of water samples (87.18%) have nitrate concentrations lower than the World Health Organization (WHO) standard guideline value of 50 mg·L−1. Assessment of non-carcinogenic risks associated with intake of polluted groundwater in local populations indicates that 82.05% and 87.18% of groundwater samples have a THI > 1 in adults and children, respectively. However, the highest THI value (15.87) was recorded for children suggesting that children face greater non-carcinogenic risks than adults. The results of this study can be used as a support by the policymakers and practitioners to develop appropriate policies for effective and sustainable groundwater management and to monitor human health implications.展开更多
文摘In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and borehol
文摘This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Environmental Protection Agency (USEPA). Forty-two samples were collected from wells and boreholes and analyzed for nitrate, fluoride and other water quality parameters. Results of the study indicate that fluoride and nitrate concentrations vary respectively from 0.13 to 9.41 mg·L−1 and from 0.13 to 432.24 mg·L−1 with respective median values of 2.65 and 13.85. About 69% of groundwater samples exceed the allowable limit (1.5 mg·L−1) of fluoride for drinking water. Spatial distribution of fluoride shows high concentrations in certain localities with values ranging from 6.74 mg·L−1 to 9.41 mg·L−1. The spatial distribution of nitrate indicates that the majority of water samples (87.18%) have nitrate concentrations lower than the World Health Organization (WHO) standard guideline value of 50 mg·L−1. Assessment of non-carcinogenic risks associated with intake of polluted groundwater in local populations indicates that 82.05% and 87.18% of groundwater samples have a THI > 1 in adults and children, respectively. However, the highest THI value (15.87) was recorded for children suggesting that children face greater non-carcinogenic risks than adults. The results of this study can be used as a support by the policymakers and practitioners to develop appropriate policies for effective and sustainable groundwater management and to monitor human health implications.